We study the parameterized complexity of a variant of the classic video game Snake that models real-world problems of motion planning. Given a snake-like robot with an initial position and a final position in an environment (modeled by a graph), our objective is to determine whether the robot can reach the final position from the initial position without intersecting itself. Naturally, this problem models a wide-variety of scenarios, ranging from the transportation of linked wagons towed by a locomotor at an airport or a supermarket to the movement of a group of agents that travel in an “ant-like” fashion and the construction of trains in amusement parks. Unfortunately, already on grid graphs, this problem is PSPACE-complete. Nevertheless, we prove that even on general graphs, the problem is solvable in FPT time with respect to the size of the snake. In particular, this shows that the problem is fixed-parameter tractable (FPT). Towards this, we show how to employ color-coding to sparsify the configuration graph of the problem to reduce its size significantly. We believe that our approach will find other applications in motion planning. Additionally, we show that the problem is unlikely to admit a polynomial kernel even on grid graphs, but it admits a treewidth-reduction procedure. To the best of our knowledge, the study of the parameterized complexity of motion planning problems (where the intermediate configurations of the motion are of importance) has so far been largely overlooked. Thus, our work is pioneering in this regard.
We study the parameterized complexity of a variant of the classic video game Snake that models real-world problems of motion planning. Given a snake-like robot with an initial position and a final position in an environment (modeled by a graph), our objective is to determine whether the robot can reach the final position from the initial position without intersecting itself. Naturally, this problem models a wide-variety of scenarios, ranging from the transportation of linked wagons towed by a locomotor at an airport or a supermarket to the movement of a group of agents that travel in an "ant-like" fashion and the construction of trains in amusement parks. Unfortunately, already on grid graphs, this problem is PSPACEcomplete [Biasi and Ophelders, 2016]. Nevertheless, we prove that even on general graphs, the problem is solvable in time k O(k) |I| O(1) where k is the size of the snake, and |I| is the input size. In particular, this shows that the problem is fixed-parameter tractable (FPT). Towards this, we show how to employ color-coding to sparsify the configuration graph of the problem to have size k O(k) |I| O(1) rather than |I| O(k) . We believe that our approach will find other applications in motion planning. Additionally, we show that the problem is unlikely to admit a polynomial kernel even on grid graphs, but it admits a treewidth-reduction procedure. To the best of our knowledge, the study of the parameterized complexity of motion planning problems (where the intermediate configurations of the motion are of importance) has so far been largely overlooked. Thus, our work is pioneering in this regard. * Ben-Gurion University of the Negev, Israel. siddhart@post.bgu.ac.il † Ben-Gurion University of the Negev, Israel. saag@bgu.ac.il ‡ Ben-Gurion University of the Negev, Israel. meiravze@bgu.ac.il
Grid graphs, and, more generally, k × r grid graphs, form one of the most basic classes of geometric graphs. Over the past few decades, a large body of works studied the (in)tractability of various computational problems on grid graphs, which often yield substantially faster algorithms than general graphs. Unfortunately, the recognition of a grid graph (given a graph G, decide whether it is a grid graph) is particularly hard-it was shown to be NP-hard even on trees of pathwidth 3 already in 1987. Yet, in this paper, we provide several positive results in this regard in the framework of parameterized complexity (additionally, we present new and complementary hardness results). Specifically, our contribution is threefold. First, we show that the problem is fixed-parameter tractable (FPT) parameterized by k + mcc where mcc is the maximum size of a connected component of G. This also implies that the problem is FPT parameterized by td + k where td is the treedepth of G (to be compared with the hardness for pathwidth 2 where k = 3). (We note that when k and r are unrestricted, the problem is trivially FPT parameterized by td.) Further, we derive as a corollary that strip packing is FPT with respect to the height of the strip plus the maximum of the dimensions of the packed rectangles, which was previously only known to be in XP. Second, we present a new parameterization, denoted aG, relating graph distance to geometric distance, which may be of independent interest. We show that the problem is para-NP-hard parameterized by aG, but FPT parameterized by aG on trees, as well as FPT parameterized by k + aG. Third, we show that the recognition of k × r grid graphs is NP-hard on graphs of pathwidth 2 where k = 3. Moreover, when k and r are unrestricted, we show that the problem is NP-hard on trees of pathwidth 2, but trivially solvable in polynomial time on graphs of pathwidth 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.