Glucosidase II is an ER heterodimeric enzyme that cleaves sequentially the two innermost alpha-1,3-linked glucose residues from N-linked oligosaccharides on nascent glycoproteins. This processing allows the binding and release of monoglucosylated (Glc(1)Man(9)GlcNAc(2)) glycoproteins with calnexin and calreticulin, the lectin-like chaperones of the endoplasmic reticulum. We have isolated two cDNA isoforms of the human alpha subunit (alpha1 and alpha2) differing by a 66 bp stretch, and a cDNA for the corresponding beta subunit. The alpha1 and alpha2 forms have distinct mobilities on SDS-PAGE and are expressed in most of the cell lines we have tested, but were absent from the glucosidase II-deficient cell line PHA(R) 2.7. Using COS7 cells, the coexpression of the beta subunit with the catalytic alpha subunit was found to be essential for enzymatic activity, solubilization, and/or stability, and ER retention of the alpha/beta complex. Transfected cell extracts expressing either alpha1 or alpha2 forms with the beta subunit showed similar activities, while mutating( )the nucleophile (D542N) predicted from the glycoside hydrolase Family 31 active site consensus sequence abolished enzymatic activity. In order to compare the kinetic parameters of both alpha1/beta and alpha2/beta forms of human glucosidase II the protein was expressed with the baculovirus expression system. Expression of the human alpha or beta subunit alone led to the formation of active human/insect heteroenzymes, demonstrating functional complementation by the endogenous insect glucosidase II subunits. The activity of both forms of recombinant human glucosidase II was examined with a p-nitrophenyl alpha-D-glucopyranoside substrate, and a two binding site kinetic model for this substrate was shown. The K(M1-2) values and apparent K(i1-2 )for deoxynojirimycin and castanospermine were determined and found to be identical for both isoforms suggesting they have similar catalysis and inhibition characteristics. The substrate specificities of both isoforms using the physiological oligosaccharides were assessed and found to be similar.
Despite the success of highly active antiretroviral therapy, the current emergence and spread of drugresistant variants of human immunodeficiency virus (HIV) stress the need for new inhibitors with distinct properties. We designed, produced, and screened a library of compounds based on an original L-lysine scaffold for their potentials as HIV type 1 (HIV-1) protease inhibitors (PI). One candidate compound, PL-100, emerged as a specific and noncytotoxic PI that exhibited potent inhibition of HIV-1 protease and viral replication in vitro (K i , ϳ36 pM, and 50% effective concentration [EC 50 ], ϳ16 nM, respectively). To confirm that PL-100 possessed a favorable resistance profile, we performed a cross-resistance study using a panel of 63 viral strains from PI-experienced patients selected for the presence of primary PI mutations known to confer resistance to multiple PIs now in clinical use. The results showed that PL-100 retained excellent antiviral activity against almost all of these PI-resistant viruses and that its performance in this regard was superior to those of atazanavir, amprenavir, indinavir, lopinavir, nelfinavir, and saquinavir. In almost every case, the increase in the EC 50 for PL-100 observed with viruses containing multiple mutations in protease was far less than that obtained with the other drugs tested. These data underscore the potential for PL-100 to be used in the treatment of drug-resistant HIV disease and argue for its further development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.