Drug-drug interactions are preventable causes of medical injuries and often result in doctor and emergency room visits. Computational techniques can be used to predict potential drug-drug interactions. We approach the drug-drug interaction prediction problem as a link prediction problem and present two novel methods for drug-drug interaction prediction based on artificial neural networks and factor propagation over graph nodes: adjacency matrix factorization (AMF) and adjacency matrix factorization with propagation (AMFP). We conduct a retrospective analysis by training our models on a previous release of the DrugBank database with 1,141 drugs and 45,296 drug-drug interactions and evaluate the results on a later version of DrugBank with 1,440 drugs and 248,146 drug-drug interactions. Additionally, we perform a holdout analysis using DrugBank. We report an area under the receiver operating characteristic curve score of 0.807 and 0.990 for the retrospective and holdout analyses respectively. Finally, we create an ensemble-based classifier using AMF, AMFP, and existing link prediction methods and obtain an area under the receiver operating characteristic curve of 0.814 and 0.991 for the retrospective and the holdout analyses. We demonstrate that AMF and AMFP provide state of the art results compared to existing methods and that the ensemble-based classifier improves the performance by combining various predictors. Additionally, we compare our methods with multi-source data-based predictors using cross-validation. In the multi-source data comparison, our methods outperform various ensembles created using 29 different predictors based on several data sources. These results suggest that AMF, AMFP, and the proposed ensemble-based classifier can provide important information during drug development and regarding drug prescription given only partial or noisy data. Additionally, the results indicate that the interaction network (known DDIs) is the most useful data source for identifying potential DDIs and that our methods take advantage of it better than the other methods investigated. The methods we present can also be used to solve other link prediction problems. Drug embeddings (compressed representations) created when training our models using the interaction network have been made public.
In recent years, due to the complementary action of drug combinations over mono-therapy, the multiple-drugs for multiple-targets paradigm has received increased attention to treat bacterial infections and complex diseases. Although new drug combinations screening has benefited from experimental tests like automated high throughput screening, it is limited due to the large number of possible drug combinations. The task of drug combination screening can be streamlined through computational methods and models. Such models require up-to-date databases; however, existing databases are static and consist of the data collected at the time of their creation. This paper introduces the Continuous Drug Combination Database (CDCDB), a continuously updated drug combination database. The CDCDB includes over 40,795 drug combinations, of which 17,107 are unique combinations consisting of more than 4,129 individual drugs, curated from ClinicalTrials.gov, the FDA Orange Book®, and patents. To create CDCDB, we use various methods, including natural language processing techniques, to improve the process of drug combination discovery, ensuring that our database can be used for drug synergy prediction. Website: https://icc.ise.bgu.ac.il/medical_ai/CDCDB/.
This paper presents a method for continuous indoor-outdoor environment detection on mobile devices based solely on Wi-Fi fingerprints. Detection of indoor-outdoor switching is an important part of identifying a user's context, and it provides important information for upper layer context aware mobile applications such as recommender systems, navigation tools, etc. Moreover, future indoor positioning systems are likely to use Wi-Fi fingerprints, and therefore Wi-Fi receivers will be on most of the time. In contrast to existing research, we believe that these fingerprints should be leveraged, and they serve as the basis of the proposed method. Using various machine learning algorithms, we train a supervised classifier based on features extracted from the raw fingerprints, clusters, and cluster transition graph. The contribution of each of the features to the method is assessed. Our method assumes no prior knowledge of the environment, and a training set consisting of the data collected for just a few hours on a single device is sufficient in order to provide indoor-outdoor classification, even in an unknown location or when using new devices. We evaluate our method in an experiment involving 12 participants during their daily routine, with a total of 828 hours' worth of data collected by the participants. We report a predictive performance of the AUC (area under the curve) of 0.94 using the gradient boosting machine ensemble learning method. We show that our method can be used for other context detection tasks such as learning and recognizing a given building or room.
Motivation Teratogenic drugs can cause severe fetal malformation and therefore have critical impact on the health of the fetus, yet the teratogenic risks are unknown for most approved drugs. This article proposes an explainable machine learning model for classifying pregnancy drug safety based on multimodal data and suggests an orthogonal ensemble for modeling multimodal data. To train the proposed model, we created a set of labeled drugs by processing over 100 000 textual responses collected by a large teratology information service. Structured textual information is incorporated into the model by applying clustering analysis to textual features. Results We report an area under the receiver operating characteristic curve (AUC) of 0.891 using cross-validation and an AUC of 0.904 for cross-expert validation. Our findings suggest the safety of two drugs during pregnancy, Varenicline and Mebeverine, and suggest that Meloxicam, an NSAID, is of higher risk; according to existing data, the safety of these three drugs during pregnancy is unknown. We also present a web-based application that enables physicians to examine a specific drug and its risk factors. Availability and implementation The code and data is available from https://github.com/goolig/drug_safety_pregnancy_prediction.git. Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.