We describe a major advance in scanning ion conductance microscopy: a new hopping mode that allows non-contact imaging of the complex surfaces of live cells with resolution better than 20 nm. The effectiveness of this novel technique was demonstrated by imaging networks of cultured rat hippocampal neurons and mechanosensory stereocilia of mouse cochlear hair cells. The technique allows studying nanoscale phenomena on the surface of live cells under physiological conditions.There is a great interest in developing methods to image live cells at nanoscale resolution. Scanning probe microscopy (SPM) is one approach to this problem and both atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) have been used to image live cells 1,2 . However, deformation of the soft and responsive cell by AFM cantilever, particularly when imaging eukaryotic cells, represents a substantial problem for AFM. SECM, in contrast, involves no physical contact with the sample but a true topographic imaging of the convoluted surface of living cells with nanoscale resolution has not been yet achieved. Scanning ion conductance microscopy (SICM) 3 is another form of SPM, that allows imaging of the cell surface under physiological conditions without physical contact and with a resolution of 3-6 nm 4,5 . However, until now, SICM was restricted to imaging relatively flat surfaces, like all other SPM techniques. This is because when the probe encounters a vertical structure, it inevitably collides with the specimen (Fig. 1a). Here we report a novel mode of SICM that allows imaging of even the most convoluted surface structures at the nanoscale. SICM is based on the phenomenon that the ion flow through a sharp fluid-filled nanopipette is partially occluded when the pipette approaches the surface of a cell 3 . In conventional SICM a nanopipette is mounted on a three-dimensional piezo and automatic feedback control moves the pipette up or down to keep the pipette current at a constant level (the set point), while the sample is scanned in X-Y directions. Thus, a pipette-sample separation, typically equal to the pipette's inner radius, is maintained during imaging. In our hopping probe ion conductance microscopy (HPICM), we no longer use continuous feedback. Instead, at each imaging point, the pipette approaches the sample from a starting position that is above any of the surface features (Fig. 1b). The reference current is measured while the pipette is well away from the surface. The pipette then approaches until the current is reduced by a predefined amount, usually 0.25-1%. The Z-position when the current achieves this reduction is recorded as the height of the sample at this imaging point. Typically, even at a 1% reduction of the current, the pipette is still at a distance of about one inner pipette radius from the surface. Therefore, the probe never touches the surface of the cell. The pipette is then withdrawn away from the surface and the sample moved laterally to determine the next imaging point. By continuously upd...
Two methods are described for using the jellyfish green fluorescent protein (GFP) as a reporter gene for ion channel expression. GFP fluorescence can be used to identify the transfected cells, and to estimate the relative levels of ion channel expression, in cotransfection experiments. A GFP-NMDAR1 chimera can be constructed that produces a functional, fluorescent receptor subunit. These methods should facilitate studies of ion channel expression, localization, and processing.
SummaryDirect electrical access to presynaptic ion channels has hitherto been limited to large specialized terminals such as the calyx of Held or hippocampal mossy fiber bouton. The electrophysiology and ion-channel complement of far more abundant small synaptic terminals (≤1 μm) remain poorly understood. Here we report a method based on superresolution scanning ion conductance imaging of small synapses in culture at approximately 100–150 nm 3D resolution, which allows presynaptic patch-clamp recordings in all four configurations (cell-attached, inside-out, outside-out, and whole-cell). Using this technique, we report presynaptic recordings of K+, Na+, Cl−, and Ca2+ channels. This semiautomated approach allows direct investigation of the distribution and properties of presynaptic ion channels at small central synapses.Video Abstract
The rat SK1 gene (rSK1) does not form functional Ca2+‐activated potassium channels when expressed alone in mammalian cell lines. Using a selective antibody to the rSK1 subunit and a yellow fluorescent protein (YFP) tag we have discovered that rSK1 expression produces protein that remains largely at intracellular locations. We tested the idea that rSK1 may need an expression partner, rSK2, in order to form functional channels. When rSK1 was co‐expressed with rSK2 in HEK 293 cells it increased the current magnitude by 77 ± 34 % (as compared with cells expressing rSK2 alone). Co‐expression of rSK1 with rSK2 also changed the channel pharmacology. The sensitivity of SK current to block by apamin was reduced ~16‐fold from an IC50 of 94 pm (for SK2 alone) to 1.4 nm (for SK2 and SK1 together). The sensitivity to block by UCL 1848 (a potent small molecule blocker of SK channels) was similarly reduced, ~26‐fold, from an IC50 of 110 pm to 2.9 nm. These data clearly demonstrate that rSK1 and rSK2 subunits interact. The most likely explanation for this is that the subunits are able to form heteromeric assemblies.
The aim of this study was to determine whether functional heteromeric channels can be formed by co-assembly of rat SK3 (rSK3) potassium channel subunits with either SK1 or SK2 subunits. First, to determine whether rSK3 could co-assemble with rSK2 we created rSK3VK (an SK3 mutant insensitive to block by UCL 1848). When rSK3VK was co-expressed with rSK2 the resulting currents had an intermediate sensitivity to UCL 1848 (IC 50 of ϳ5 nM compared with 120 pM for rSK2 and >300 nM for rSK3VK), suggesting that rSK3 and rSK2 can form functional heteromeric channels. To detect co-assembly of SK3 with SK1, we initially used a dominant negative construct of the human SK1 subunit (hSK1YP). hSK1YP dramatically reduced the SK3 current, supporting the idea that SK3 and SK1 subunits also interact. To determine whether these assemblies were functional we created rSK3VF, an rSK3 mutant with an enhanced affinity for tetraethylammonium chloride (TEA) (IC 50 of 0.3 mM). Co-transfection of rSK3VF and hSK1 produced currents with a sensitivity to TEA not different from that of hSK1 alone (IC 50 ϳ15 mM). These results suggest that hSK1 does not produce functional cell-surface assemblies with SK3. Antibody-staining experiments suggested that hSK1 may reduce the number of functional SK3 subunits reaching the cell surface. Additional experiments showed that co-expression of the rat SK1 gene with SK3 also dramatically suppressed SK current. The pharmacology of the residual current was consistent with that of homomeric SK3 assemblies. These results demonstrate interactions that cause changes in protein trafficking, cell surface expression, and channel pharmacology and strongly suggest heteromeric assembly of SK3 with the other SK channel subunits.Small conductance Ca 2ϩ -activated potassium channels (SK 1 channels) are widely expressed throughout the central and peripheral nervous systems. In many neurons SK channels underlie some components of the post-spike after-hyperpolarization (see e.g. Ref. 1). They also have important functions in nonneuronal tissues. Native SK channels have a characteristic pharmacology. They can be blocked by the bee venom toxin apamin and several selective small molecule blockers that we have developed (such as UCL 1848) that are active at nanomolar or subnanomolar concentrations (2-4).Molecular cloning studies have identified three closely related genes (SK1, -2, and -3) which code for SK channel subunits in mammalian cells (5-7). In both Xenopus oocytes and mammalian cell lines, expression of the rat homologues of SK2 and SK3 (rSK2 and rSK3 respectively) results in the formation of functional homomeric SK channels. Further, both homomeric rSK2 and homomeric rSK3 channels can be blocked by either apamin or UCL 1848 at concentrations that are similar to those reported for native channels (8). The potencies of both compounds depend on the subunit composition of the channel, with the IC 50 for blocking homomeric SK2 channels being ϳ18-fold lower than for SK3.The behavior of SK1 is different to that of other SK genes....
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.