An AC-battery or multilevel inverter used to increase safety and flexibility is realizable by switching the cells and modules on and off in a defined way and thus can replace the bidirectional converter. Assessing possible additional aging due to switching, the results of a previous study for a high-power optimized cell showed no influence on the current rates or the switching. In this paper, a highly energy-optimized LG 18650-cell is investigated to discuss the influence of switching during the charge and discharge process, respectively, as well as combining both processes together with clear performance differences when applying higher charge and discharge currents. Moreover, the influence of switching is discussed for the two frequencies (50 Hz and 10 kHz) and different duty cycles. The aging is analyzed by capacity loss and resistance increase, by dV/dQ analysis, and by electrochemical impedance spectroscopy. We found no clear negative influence of switching but a positive effect if the cells are switched during charge. The best performance is found for switching during charge as well as during discharge. The cell aging during switching is clearly determined by the average and not the maximum current applied. This work shows no negative effects of multilevel inverter applications on the tested cells.
For intelligent battery systems that are able to control the current flow for each individual cell, the multilevel inverter is an interesting approach to replace the bidirectional AC/DC-converter and improve flexibility of charging system and signal quality in both directions. Therefore, the cells are modulated by switching varying the duty cycle, the current and the frequency up to the kHz-range. This is only beneficial if the switching does not lead to a significant additional aging. The scientific gap to assess and understand the impact of switching is investigated in this paper by testing 22 high-power 18650 lithium-ion cells (Samsung 25R). The cells are tested at 50 Hz and 10 kHz switching frequency during charge, discharge and charge/discharge at 50% duty cycle. The tests are compared to eight reference tests with continuous current flow performed at the average and the maximum current for charge and discharge, respectively. The results are obtained by evaluating the remaining capacity, resistance, electrochemical impedance spectroscopy and dV/dQ analysis. Before reaching rollover, the investigated cells lose homogeneity and cathode capacity but no significant difference for the aging parameters are found. After rollover, the cell-to-cell variation is greater than the aging induced by the different cycling parameters.
We present bottom gate bottom contact staggered oxide semiconductor TFTs, manufactured by using an ink-jet printed metal oxide semi-conductor material from the company Evonik. The printed TFTs with optimized process and adjusted channel geometry present high charge carrier mobility values between 10 and 15 cm 2 /V . s and on/off current-ratios of more than 10 6 . The maximum temperature used is 300 °C, which makes the process compatible with the display manufacturing. To achieve a more stable electric behavior and better threshold voltage homogeneity, mainly in the case of positive gate bias stress, we used a solution processed encapsulation to shield the device from the atmospheric effects. The encapsulated TFTs show a considerable stability improvement and present hence an attractive technology alternative for active matrix processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.