Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self‐healing. Here, a polyurethane (DA‐PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra‐chain and inter‐chain donor‐acceptor self‐assembly, which endow the polyurethane with toughness, self‐healing, and, more interestingly, thermal repair, like human muscle. In detail, DA‐PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti‐fatigue and anti‐stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long‐time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self‐healing speed of DA‐PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self‐healable capacitive sensor is constructed and evaluated to prove that DA‐PU matrix can ensure the stability of electronics even after critical deformation and cut off.
The most commonly used curing agents for soybased adhesives are polyamines, which have the problem of low solid content and/or high viscosity. To overcome this problem, a new type of polyamidoamine (PADA) resin was synthesized and applied to soy flour-based adhesives to improve their water resistance. The PADA solution obtained had a high solid content of 50 wt% and low viscosity of 270 cP. The optimum weight ratio of soy flour/ PADA/maleic anhydride to prepare adhesive was 40/7/1.68. The wet strength of plywood prepared at the optimum weight ratio was 0.82 MPa, which meant the plywood could be used as type II plywood according to the Chinese National Standard GB/T 9846.7-2004. The results of waterinsoluble solid content measurement and SEM observation demonstrated that cured soy flour-PADA-maleic anhydride adhesive had a 16 % greater water-insoluble solid content than soy flour-NaOH adhesive. The cross-linking network formed by the reactions of PADA and MA would increase the water-insoluble solid contents and improve water resistance of cured soy flour-based adhesives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.