Site investigations were recently performed offshore at three prospective plat-form sites in water depths between 400 and 500 m in the Gulf of Mexico. Soil conditions at the sites generally range from very soft clays near the seafloor to very stiff clays at 120- to 150-m penetration. Analyses of stress history indicate the soils at these locations are generally normally consolidated. Laboratory tests were performed on recovered specimens to deter-mine the undrained shear strength. Standard laboratory miniature vane shear tests and unconsolidated-undrained triaxial tests were performed in addition to consolidated-undrained tests using stress history and normalized soil engineering properties (SHANSEP) procedures. Tests performed in the field included in-situ vane and cone penetrometer. Cone factors Nk were computed using in-situ vane shear strengths as the reference strength. This paper compares the results of consolidated-undrained (SHANSEP) laboratory and in-situ tests to determine a relationship that may be used to correlate these results. The effects of soil strength and plasticity are examined and used to correlate shear strength with the liquidity index. A comparison is also made between peak and residual in-situ vane strengths. This paper further describes how a combination of these in-situ and laboratory tests can be used to characterize a deepwater site for foundation design. Recommendations for future site investigations are also discussed.
Two distinct activator proteins for lipoprotein lipase (LPL) have been isolated in approximately equal amounts from ovine plasma. These low molecular weight proteins were readily separated from each other on the basis of size and charge. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated proteins of Mr about 8000 and 5000, with pI in urea-containing gels of about 5·1 and 4·8 respectively. Each of the ovine activator proteins was as effective as human apolipoprotein C-II (apo C-II) in activating LPL, with I JLg/ml giving near to maximum activation, and in lowering the apparent Km of LPL for triolein substrate. As the ratio of activator to triolein increased from 0·16 to 5· 2 (JLg/mg) the apparent Km fell from about O' 5 to 0 ·18 mM. Whereas human apo C-II and the two ovine activators were equally effective in stimulating the hydrolysis of triolein, differences were observed between the human and ovine activators when p-nitrophenylbutyrate was used as substrate. Unlike human apo C-II, which produced significant inhibition of p-nitrophenylbutyrate hydrolysis, the ovine activators were without effect. This suggests that the interaction between the ovine activators and LPL is different from that of human apo C-II.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.