Bio-based polycarbonates containing cyclic ketal moieties were designed, and the bio-based diol monomer was synthesized by CQ with glycerol to improve their thermal properties and replace BPA in polymer industry. The molecular structure of the novel bio-based diol monomer 2,2:3,3-bis(4′-hydroxymethylethylenedioxy)-1,7,7-trimethylbicyclo[2.2.1]heptane (abbreviated as CaG) was analyzed by 1 H, 13 C, and 2D-COSY NMR techniques. GPC results show that CaG was reacted successfully and led to the high molecular weights for homopolycarbonate (M w = 18 652) abbreviated as PCaGC and for copolycarbonate (M w = 78 482) as PCaG 20 BPA 80 C. The high thermal stability (T d value above 350°C) and glass transition temperature (T g value from 128 to 151°C) of PCaGCs and PCaG x BPA y Cs were studied by TGA and DSC, respectively. Given the sufficient reactivity and high thermal stability, CaG is a promising renewable building block for applicable polymers.
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor (TGF-b) superfamily and are involved in osteoblastic differentiation. The largest TGF-b superfamily subgroup shares genetic homology with human BMPs (hBMPs) and silkworm decapentaplegic (dpp). In addition, hBMPs are functionally interchangeable with Drosophila dpp . Bombyx mori dpp may induce bone formation in mammalian cells. To test this hypothesis, we synthesized the 1,285-base pairs cDNA of full-length B. mori dpp using total RNAs obtained from the fat body of 3-day-old of the 5 th instar larvae and cloned the cDNA into the pCEP4 mammalian expression vector. Next, B. mori dpp was expressed in C3H10T1/2 cells. The target cells transfected with the pCEP4-Bm dpp plasmid showed biological functions similar to those of osteogenic differentiation induction growth factors such as hBMPs. We determined the relative mRNA expression rates of Runt-related transcription factor 2 (RUNX2), osterix, osteocalcin, and alkaline phosphatase (ALP) to validate the osteoblast-specific differentiation effects of B. mori dpp by performing quantitative real-time RT-PCR. Interestingly, mRNA expression levels of the 3 marker genes except RUNX2, in cells expressing B. mori dpp were much higher than those in control cells and C3H10T1/2 cells transfected with pCEP4. These results suggested that B. mori dpp signaling regulates osterix expression during osteogenic differentiation via RUNX2-independent mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.