We report functional gold nanoparticles (AuNPs) with a pH-sensitive γ-cyclodextrin (CD) cap. These particles include two chargeable CD molecules on their surface. CD with dopamine and amine (NH) groups (hereafter termed as dCD-NH) was anchored to the gold surface and then electrostatically complexed with the CD with 2,3-dimethylmaleic acid (DMA) and chlorin e6 (Ce6) (hereafter termed as cCD-DMA), producing an ionic complex consisting of dCD-NH and cCD-DMA. Under the acidic environment (pH 6.8) existing in most solid tumors, the ionic complex was destabilized because of the decoupling of DMA, resulting in the release of cCD (without DMA) from the AuNPs, resulting in extensive tumoral uptake of AuNPs with dCD-NH (because of their electrostatic attraction to tumor cells). This event resulted in a significant increase in the efficiency of cellular AuNP uptake and light-driven (AuNP-mediated photothermal and Ce6-mediated photodynamic) ablation of acidic solid tumors, suggesting marked potential for tumor therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.