Photothermal therapy can serve as an alternative to classic surgery in the treatment of patients with cancer. However, using photothermal therapy can result in local overheating and damage to normal tissues. Therefore, it is important to determine effective heating conditions based on heat transfer. In this study, we analyzed laser–tissue interactions in gold nanoparticle (GNP)-enhanced photothermal therapy based on the theory of heat transfer. The thermal behavior inside tissues during photothermal therapy was analyzed using numerical analysis. The apoptosis ratio was defined by deriving the area having a temperature distribution between 43 °C and 50 °C, which is required for inducing apoptosis. Thermal damage, caused by local heating, was defined using the thermal hazard value. Using this approach, we confirmed that apoptosis can be predicted with respect to tumor size (aspect ratio) and heating conditions (laser intensity and radius) in photothermal therapy with a continuous-wave laser. Finally, we determined the effective apoptosis ratio and thermal hazard value of normal tissue according to tumor size and heating conditions, thereby establishing conditions for inducing maximal levels of cell apoptosis with minimal damage to normal tissue. The optimization conditions proposed in this study can be a gentle and effective treatment option for photothermal therapy.
Among the noncontact measurement technologies used to acquire thermal property information, those that use the photothermal effect are attracting attention. However, it is difficult to perform measurements for new materials with different optical and thermal properties, owing to limitations of existing thermal conductivity measurement methods using the photothermal effect. To address this problem, this study aimed to develop a rear-side mirage deflection method capable of measuring thermal conductivity regardless of the material characteristics based on the photothermal effect. A thin copper film (of 20 µm thickness) was formed on the surfaces of the target materials so that measurements could not be affected by the characteristics of the target materials. In addition, phase delay signals were acquired from the rear sides of the target materials to exclude the influence of the pump beam, which is a problem in existing thermal conductivity measurement methods that use the photothermal effect. To verify the feasibility of the proposed measurement technique, thermal conductivity was measured for copper, aluminum, and stainless steel samples with a 250 µm thickness. The results were compared with literature values and showed good agreement with relative errors equal to or less than 0.2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.