Purpose To investigate the plan quality and doses to the heart, contralateral breast (CB), ipsilateral lung (IL), and contralateral lung (CL) in tangential breast treatments using the Halcyon linac with megavoltage setup fields. Methods Radiotherapy treatment plans with tangential beams from 25 breast cancer patients previously treated on a C‐arm linac were replanned for Halcyon. Thirteen corresponded to right‐sided breasts and 12 to left‐sided breasts, all with a dose prescription of 50 Gy in 25 fractions. Plans were created with the following setup imaging techniques: low‐dose (LD) MVCBCT, high‐quality (HQ) MVCBCT, LD‐MV and HQ‐MV pairs and the imaging dose was included in the plans. Plan quality metric values for the lumpectomy cavity, whole‐breast and doses to the organs at risk (OARs) were measured and compared with those from the original plans. Results No significant differences in plan quality were observed between the original and Halcyon plans. An increase in the mean dose (Mean) for all the organs was observed for the Halcyon plans. For right‐sided plans, the accumulated Mean over the 25 fractions in the C‐arm plans was 0.4 ± 0.3, 0.2 ± 0.2, 5.4 ± 1.3, and 0.1 ± 0.1 Gy for the heart, CB, IL, and CL, respectively, while values in the MVCBCT‐LD Halcyon plans were 1.2 ± 0.2, 0.6 ± 0.1, 6.5 ± 1.4, and 0.4 ± 0.1 Gy, respectively. For left‐sided treatments, Mean in the original plans was 0.9 ± 0.2, 0.1 ± 0.0, 4.2 ± 1.2, and 0.0 ± 0.0 Gy, while for the MVCBCT‐LD Halcyon plans values were 1.9 ± 0.2, 0.6 ± 0.2, 5.1 ± 1.2, and 0.5 ± 0.2 Gy, respectively. Conclusions Plan quality for breast treatments using Halcyon is similar to the quality for a 6 MV, C‐arm plan. For treatments using megavoltage setup fields, the dose contribution to OARs from the imaging fields can be equal or higher than the dose from treatment fields.
Purpose: In this work, we investigated the effect on the workflow and setup accuracy of using surface guided radiation therapy (SGRT) for patient setup, megavoltage cone beam CT (MVCBCT) or kilovoltage cone beam CT (kVCBCT) for imaging and fixed IMRT or volumetric-modulated arc therapy (VMAT) for treatment delivery with the Halcyon linac. Methods:We performed a retrospective investigation of 272 treatment fractions, using three different workflows. The first and second workflows used MVCBCT and fixed IMRT for imaging and treatment delivery, and the second one also used SGRT for patient setup. The third workflow used SGRT for setup, kVCBCT for imaging and VMAT for delivery. Workflows were evaluated by comparing the number of fractions requiring repeated imaging acquisitions and the time required for setup, imaging and treatment delivery. Setup position accuracy was assessed by comparing the daily kV-or MV-CBCT with the planning CT and measuring the residual rotational errors for pitch, yaw and roll angles.Results: Without the use of SGRT, the imaging fields were delivered more than once on 11.1% of the fractions, while re-imaging was necessary in 5.5% of the fractions using SGRT. The total treatment time, including setup, imaging, and delivery, for the three workflows was 531 ± 157 s, 503 ± 130 s and 457 ± 91 s, respectively. A statistically significant difference was observed when comparing the third workflow with the first two. The total residual rotational errors were 1.96 ± 1.29°, 1.28 ± 0.67°and 1.22 ± 0.76°and statistically significant differences were observed when comparing workflows with and without SGRT. Conclusions:The use of SGRT allowed for a reduction of re-imaging during patient setup and improved patient position accuracy by reducing residual rotational errors.A reduction in treatment time using kVCBCT with SGRT was observed. The most efficient workflow was the one including kVCBCT and SGRT for setup and VMAT for delivery. K E Y W O R D SAlignRT, Halcyon, rotational errors, SGRT, surface guided radiotherapy ---
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.