Intrauterine growth restriction (IUGR) is one of the key features of fetal alcohol syndrome (FAS), and IUGR can be mediated by impaired placentation. Insulin-like growth factors (IGF) regulate placentation due to stimulatory effects on extravillous trophoblasts, which are highly motile and invasive. Previous studies demonstrated that extravillous trophoblasts express high levels of aspartyl-(asparaginyl) beta-hydroxylase (AAH), a gene that is regulated by IGF and has a critical role in cell motility and invasion. The present study examines the hypothesis that ethanol impaired placentation is associated with inhibition of AAH expression in trophoblasts. Pregnant Long Evans rats were fed isocaloric liquid diets containing 0% or 37% ethanol by caloric content. Placentas harvested on gestation day 16 were used for histopathological, mRNA, and protein studies to examine AAH expression in relation to the integrity of placentation and ethanol exposure. Chronic ethanol feeding prevented or impaired the physiological conversion of uterine vessels required for expansion of maternal circulation into placenta, a crucial process for adequate placentation. Real-time quantitative RT-PCR analysis demonstrated significant reductions in IRS-1, IRS-2, and significant increases in IGF-II and IGF-II receptor mRNA levels in ethanol-exposed placentas. These abnormalities were associated with significantly reduced levels of AAH expression in trophoblastic cells, particularly within the mesometrial triangle (deep placental bed) as demonstrated by real time quantitative RT-PCR, Western blot analysis, ELISA, and immunohistochemical staining. Ethanol-impaired placentation is associated with inhibition of AAH expression in trophoblasts. This effect of chronic gestational exposure to ethanol may contribute to IUGR in FAS.
Background-Ethanol consumption during pregnancy increases the risk of early pregnancy loss and causes intrauterine growth restriction. We previously showed that chronic gestational exposure to ethanol impairs placentation, and that this effect is associated with inhibition of insulin and insulin growth factor signaling. Since ethanol also causes oxidative stress and DNA damage, we extended our investigations to assess the role of these pathological processes on placentation and placental gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.