[1] The emissions of carbon dioxide (CO 2 ) and methane (CH 4 ) from the Petit Saut hydroelectric reservoir (Sinnamary River, French Guiana) to the atmosphere were quantified for 10 years since impounding in 1994. Diffusive emissions from the reservoir surface were computed from direct flux measurements in 1994, 1995, and 2003 and from surface concentrations monitoring. Bubbling emissions, which occur only at water depths lower than 10 m, were interpolated from funnel measurements in 1994, 1997, and 2003. Degassing at the outlet of the dam downstream of the turbines was calculated from the difference in gas concentrations upstream and downstream of the dam and the turbined discharge. Diffusive emissions from the Sinnamary tidal river and estuary were quantified from direct flux measurements in 2003 and concentrations monitoring. Total carbon emissions were 0.37 ± 0.01 Mt yr À1 C (CO 2 emissions, 0.30 ± 0.02; CH 4 emissions, 0.07 ± 0.01) the first 3 years after impounding (1994)(1995)(1996) and then decreased to 0.12 ± 0.01 Mt yr À1 C (CO 2 , 0.10 ± 0.01; CH 4 , 0.016 ± 0.006) since 2000. On average over the 10 years, 61% of the CO 2 emissions occurred by diffusion from the reservoir surface, 31% from the estuary, 7% by degassing at the outlet of the dam, and a negligible fraction by bubbling. CH 4 diffusion and bubbling from the reservoir surface were predominant (40% and 44%, respectively) only the first year after impounding. Since 1995, degassing at an aerating weir downstream of the turbines has become the major pathway for CH 4 emissions, reaching 70% of the total CH 4 flux. In 2003, river carbon inputs were balanced by carbon outputs to the ocean and were about 3 times lower than the atmospheric flux, which suggests that 10 years after impounding, the flooded terrestrial carbon is still the predominant contributor to the gaseous emissions. In 10 years, about 22% of the 10 Mt C flooded was lost to the atmosphere. Our results confirm the significance of greenhouse gas emissions from tropical reservoir but stress the importance of: (1) considering all the gas pathways upstream and downstream of the dams and (2) taking into account the reservoir age when upscaling emissions rates at the global scale.
River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream. Three-quarters of the world's flooded land consists of temporary wetlands, but the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems. Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains. Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters.
The partial pressure of carbon dioxide (pCO2) in surface waters and related atmospheric exchanges were measured in nine European estuaries. Averaged fluxes over the entire estuaries are usually in the range of 0.1 to 0.5 mole of CO2 per square meter per day. For wide estuaries, net daily fluxes to the atmosphere amount to several hundred tons of carbon (up to 790 tons of carbon per day in the Scheldt estuary). European estuaries emit between 30 and 60 million tons of carbon per year to the atmosphere, representing 5 to 10% of present anthropogenic CO2 emissions for Western Europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.