International audienceWhen the mother’s own human milk is unavailable or limited, pasteurized human milk from milk banks is preferentially administered instead of infant formula, especially for vulnerable hospitalized neonates. Holder pasteurization (62.5 °C, 30 min) may alter human milk composition and structure, which may modulate its digestive behavior. An in vitro dynamic system was set up to simulate the gastrointestinal digestion of term newborns in order to compare the kinetics of lipolysis, proteolysis and structural disintegration of raw versus pasteurized human milk. Human milk from 5 donors was pooled. Half of the pool was either administrated raw (RHM) or pasteurized (PHM). Digestions were conducted at least in duplicate for RHM and PHM. Heat-induced protein aggregation was observed in PHM. During gastric digestion, β-casein was proteolyzed significantly faster for PHM than for RHM (p < 0.05), whereas lactoferrin tended to be proteolyzed slower (p = 0.07) for PHM. Pasteurization selectively affected the intestinal release of some amino acids. At any time of the gastrointestinal digestion, the lipolysis of PHM was significantly lower than that of RHM, but no impact was observed on the profile of released fatty acids. RHM presented a structural destabilization after 60 min of gastric digestion, while there was no large variation for PHM. In the intestinal phase, the evolution of the particle sizes was rather similar. Overall, Holder pasteurization impacted the proteolysis, lipolysis and disintegration of human milk. However, this impact was limited and the physiologic and metabolic consequences remain to be investigated
Several studies demonstrated that fermented milks may provide a large number of bioactive peptides into the gastrointestinal tract. We previously showed that beta-casomorphin-7, an opioid-like peptide produced from bovine β-casein, strongly stimulates intestinal mucin production in ex vivo and in vitro models, suggesting the potential benefit of milk bioactive peptides on intestinal protection. In the present study, we tested the hypothesis that the total peptide pool (TPP) from a fermented milk (yoghurt) may act on human intestinal mucus-producing cells (HT29-MTX) to induce mucin expression. Our aim was then to identify the peptide(s) carrying the biological activity and to study its impact in vivo on factors involved in gut protection after oral administration to rat pups (once a day, 9 consecutive days). TPP stimulated MUC2 and MUC4 gene expression as well as mucin secretion in HT29-MTX cells. Among the four peptide fractions that were separated by preparative reversed-phase high-performance liquid chromatography, only the C2 fraction was able to mimic the in vitro effect of TPP. Interestingly, the sequence [94-123] of β-casein, present only in C2 fraction, also regulated mucin production in HT29-MTX cells. Oral administration of this peptide to rat pups enhanced the number of goblet cells and Paneth cells along the small intestine. These effects were associated with a higher expression of intestinal mucins (Muc2 and Muc4) and of antibacterial factors (lysozyme, rdefa5). We conclude that the peptide β-CN(94-123) present in yoghurts may maintain or restore intestinal homeostasis and could play an important role in protection against damaging agents of the intestinal lumen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.