Recently fluid flow has been shown to be a potent physical stimulus in the regulation of bone cell metabolism. However, most investigators have applied steady or pulsing flow profiles rather than oscillatory fluid flow, which occurs in vivo because of mechanical loading. Here oscillatory fluid flow was demonstrated to be a potentially important physical signal for loading-induced changes in bone cell metabolism. We selected three well known biological response variables including intracellular calcium (Ca
Bone is removed or replaced in defined locations by targeting osteoclasts and osteoblasts in response to its local history of mechanical loading. There is increasing evidence that osteocytes modulate this targeting by their apoptosis, which is associated with locally increased bone resorption. To investigate the role of osteocytes in the control of loading-related modeling or remodeling, we studied the effects on osteocyte viability of short periods of mechanical loading applied to the ulnae of rats. Loading, which produced peak compressive strains of -0.003 or -0.004, was associated with a 78% reduction in the resorption surface at the midshaft. The same loading regimen resulted in a 40% relative reduction in osteocyte apoptosis at the same site 3 days after loading compared with the contralateral side (P = 0.01). The proportion of osteocytes that were apoptotic was inversely related to the estimated local strain (P < 0.02). In contrast, a single short period of loading resulting in strains of -0.008 engendered both tissue microdamage and subsequent bone remodeling and was associated with an eightfold increase in the proportion of apoptotic osteocytes (P = 0.02) at 7 days. This increase in osteocyte apoptosis was transient and preceded both intracortical remodeling and death of half of the osteocytes (P < 0.01). The data suggest that osteocytes might use their U-shaped survival response to strain as a mechanism to influence bone remodeling. We hypothesize that this relationship reflects a causal mechanism by which osteocyte apoptosis regulates bone's structural architecture.
This review describes the role of bone cells and their surrounding matrix in maintaining bone strength through the process of bone remodeling. Subsequently, this work focusses on how bone formation is guided by mechanical forces and fluid shear stress in particular. It has been demonstrated that mechanical stimulation is an important regulator of bone metabolism. Shear stress generated by interstitial fluid flow in the lacunar-canalicular network influences maintenance and healing of bone tissue. Fluid flow is primarily caused by compressive loading of bone as a result of physical activity. Changes in loading, e.g., due to extended periods of bed rest or microgravity in space are associated with altered bone remodeling and formation in vivo. In vitro, it has been reported that bone cells respond to fluid shear stress by releasing osteogenic signaling factors, such as nitric oxide, and prostaglandins. This work focusses on the application of in vitro models to study the effects of fluid flow on bone cell signaling, collagen deposition, and matrix mineralization. Particular attention is given to in vitro set-ups, which allow long-term cell culture and the application of low fluid shear stress. In addition, this review explores what mechanisms influence the orientation of collagen fibers, which determine the anisotropic properties of bone. A better understanding of these mechanisms could facilitate the design of improved tissue-engineered bone implants or more effective bone disease models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.