BackgroundPremature leaf senescence induced by external stress conditions, e.g. drought stress, is a main factor for yield losses in barley. Research in drought stress tolerance has become more important as due to climate change the number of drought periods will increase and tolerance to drought stress has become a goal of high interest in barley breeding. Therefore, the aim is to identify quantitative trait loci (QTL) involved in drought stress induced leaf senescence and drought stress tolerance in early developmental stages of barley (Hordeum vulgare L.) by applying genome wide association studies (GWAS) on a set of 156 winter barley genotypes.ResultsAfter a four weeks stress period (BBCH 33) leaf colour as an indicator of leaf senescence, electron transport rate at photosystem II, content of free proline, content of soluble sugars, osmolality and the aboveground biomass indicative for drought stress response were determined in the control and stress variant in greenhouse pot experiments. Significant phenotypic variation was observed for all traits analysed. Heritabilities ranged between 0.27 for osmolality and 0.61 for leaf colour in stress treatment and significant effects of genotype, treatment and genotype x treatment were estimated for most traits analysed. Based on these phenotypic data and 3,212 polymorphic single nucleotide polymorphisms (SNP) with a minor allele frequency >5 % derived from the Illumina 9 k iSelect SNP Chip, 181 QTL were detected for all traits analysed. Major QTLs for drought stress and leaf senescence were located on chromosome 5H and 2H. BlastX search for associated marker sequences revealed that respective SNPs are in some cases located in proteins related to drought stress or leaf senescence, e.g. nucleotide pyrophosphatase (AVP1) or serine/ threonin protein kinase (SAPK9).ConclusionsGWAS resulted in the identification of many QTLs involved in drought stress and leaf senescence of which two major QTLs for drought stress and leaf senescence were located on chromosome 5H and 2H. Results may be the basis to incorporate breeding for tolerance to drought stress or leaf senescence in barley breeding via marker based selection procedures.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0524-3) contains supplementary material, which is available to authorized users.
Enhanced resistance in barley (Hordeum vulgare) against pathogens, such as the powdery mildew-causing fungus Blumeria graminis f. sp. hordei, is of high importance. The beneficial effects of bacterial quorum sensing molecules on resistance and plant growth have been shown in different plant species. Here, we present the effects of the N-3-oxotetradecanoyl-l-homoserine lactone (oxo-C14-HSL) on the resistance of different barley genotypes. Genetically diverse accessions of barley were identified and exposed to the beneficial, oxo-C14-HSL-producing bacterium Ensifer meliloti or the pure N-acyl homoserine lactone (AHL) molecule. Metabolic profiling along with expression analysis of selected genes and physiological assays revealed that the capacity to react varies among different barley genotypes. We demonstrate that upon pretreatment with AHL molecule, AHL-primable barley genotype expresses enhanced resistance against B. graminis f. sp. hordei. We further show that pretreatment with AHL correlates with stronger activation of barley MAP kinases and regulation of defense-related PR1 and PR17b genes after a subsequent treatment with chitin. Noticeable was the stronger accumulation of lignin. Our results suggest that appropriate genetic background is required for AHL-induced priming. At the same time, they bear potential to use these genetic features for new breeding and plant protection approaches.
Genetic diversity and population structure assessment in crops is essential for marker trait association, marker assisted breeding and crop germplasm conservation. We analyzed a set of 285 durum wheat accessions comprising 215 Ethiopian durum wheat landraces, 10 released durum wheat varieties, 10 advanced durum wheat lines from Ethiopia, and 50 durum wheat lines from CIMMYT. We investigated the genetic diversity and population structure for the complete panel as well as for the 215 landraces, separately based on 11,919 SNP markers with known physical positions. The whole panel was clustered into two populations representing on the one hand mainly the landraces, and on the other hand mainly released, advanced and CIMMYT lines. Further population structure analysis of the landraces uncovered 4 subgroups emphasizing the high degree of genetic diversity within Ethiopian durum landraces. Population structure based AMOVA for both sets unveiled significant (P < 0.001) variation between populations and within populations. Total variation within population accessions (81%, 76%) was higher than total variation between populations (19%, 24%) for both sets. Population structure analysis based genetic differentiation (FST) and gene flow (Nm) for the whole set and the Ethiopian landraces were 0.19 and 0.24, 1.04, and 0.81, respectively indicating high genetic differentiation and limited gene flow. Diversity indices verify that the landrace panel was more diverse with (I = 0.7, He = 0.46, uHe = 0.46) than the advanced lines (I = 0.6, He = 0.42, uHe = 0.42). Similarly, differences within the landrace clusters were observed. In summary a high genetic diversity within Ethiopian durum wheat landraces was detected, which may be a target for national and international wheat improvement programs to exploit valuable traits for biotic and abiotic stresses.
Priming allows plants to respond faster and stronger to abiotic or biotic stresses. Leaf rust (Puccinia hordei) is an important pathogen of barley (Hordeum vulgare), for which resistance genes are known, but mostly overcome. Therefore, the aims of this study were (i) to establish a priming system in barley, based on bacterial N-acyl homoserine lactone (AHL), and (ii) to get information on the effect of priming on the reaction to leaf rust. Plants were inoculated with bacteria, i.e., Ensifer meliloti with repaired expR copy, producing the oxo-C14-homoserine lactone (AHL) and an E. meliloti strain carrying the attM lactonase gene from Agrobacterium tumefaciens, which cleaves the AHL and acts here as negative control. After three bacterial inoculations, plants were challenged with P. hordei strain I-80 at the three leaves stage. Twelve days after infection, scoring of the leaf area diseased and the infection type was conducted followed by the calculation of the relative susceptibility. First results indicate a significantly (P < 0.001) higher resistance level to P. hordei after inoculation with E. meliloti. Furthermore, significant (P < 0.001) differences were detected between the accessions tested for priming efficiency, which can be the basis to screen a larger set of barley accessions to detect quantitative trait loci or candidate genes involved in priming. [Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .
Background Bacteria associated with plants can enhance the plants’ growth and resistance against phytopathogens. Today, growers aim to reduce the use of mineral fertilizers and pesticides. Since phytopathogens cause severe yield losses in crop production systems, biological alternatives gain more attention. Plant and also seed endophytes have the potential to influence the plant, especially seed-borne bacteria may express their beneficiary impact at initial plant developmental stages. In the current study, we assessed the endophytic seed microbiome of seven genetically diverse barley accessions by 16S rRNA gene amplicon sequencing and verified the in vitro plant beneficial potential of isolated seed endophytes. Furthermore, we investigated the impact of the barley genotype and its seed microbiome on the rhizosphere microbiome at an early growth stage by 16S rRNA gene amplicon sequencing. Results The plant genotype displayed a significant impact on the microbiota in both barley seed and rhizosphere. Consequently, the microbial alpha- and beta-diversity of the endophytic seed microbiome was highly influenced by the genotype. Interestingly, no correlation was observed between the endophytic seed microbiome and the single nucleotide polymorphisms of the seven genotypes. Unclassified members of Enterobacteriaceae were by far most dominant. Other abundant genera in the seed microbiome belonged to Curtobacterium, Paenibacillus, Pantoea, Sanguibacter and Saccharibacillus. Endophytes isolated from barley seeds were affiliated to dominant genera of the core seed microbiome, based on their 16S rRNA gene sequence. Most of these endophytic isolates produced in vitro plant beneficial secondary metabolites known to induce plant resistance. Conclusion Although barley accessions representing high genetic diversity displayed a genotype-dependent endophytic seed microbiome, a core seed microbiome with high relative abundances was identified. Endophytic isolates were affiliated to members of the core seed microbiome and many of them showed plant beneficial properties. We propose therefore that new breeding strategies should consider genotypes with high abundance of beneficial microbes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.