HDM2 binds to an alpha-helical transactivation domain of p53, inhibiting its tumor suppressive functions. A miniaturized thermal denaturation assay was used to screen chemical libraries, resulting in the discovery of a novel series of benzodiazepinedione antagonists of the HDM2-p53 interaction. The X-ray crystal structure of improved antagonists bound to HDM2 reveals their alpha-helix mimetic properties. These optimized molecules increase the transcription of p53 target genes and decrease proliferation of tumor cells expressing wild-type p53.
The ubiquitin-related protein SUMO functions by becoming covalently attached to lysine residues in other proteins. Unlike ubiquitin, which is often linked to its substrates as a polyubiquitin chain, only one SUMO moiety is attached per modified site in most substrates. However, SUMO has recently been shown to form chains in vitro and in mammalian cells, with a lysine in the non-ubiquitin-like N-terminal extension serving as the major SUMO-SUMO branch site. To investigate the physiological function of SUMO chains, we generated Saccharomyces cerevisiae strains that expressed mutant SUMOs lacking various lysine residues. Otherwise wildtype strains lacking any of the nine lysines in SUMO were viable, had no obvious growth defects or stress sensitivities, and had SUMO conjugate patterns that did not differ dramatically from wild type. However, mutants lacking the SUMO-specific isopeptidase Ulp2 accumulated high molecular weight SUMO-containing species, which formed only when the N-terminal lysines of SUMO were present, suggesting that they contained SUMO chains. Furthermore SUMO branch-site mutants suppressed several of the phenotypes of ulp2⌬, consistent with the possibility that some ulp2⌬ phenotypes are caused by accumulation of SUMO chains. We also found that a mutant SUMO whose non-ubiquitin-like N-terminal domain had been entirely deleted still carried out all the essential functions of SUMO. Thus, the ubiquitinlike domain of SUMO is sufficient for conjugation and all downstream functions required for yeast viability. Our data suggest that SUMO can form chains in vivo in yeast but demonstrate conclusively that chain formation is not required for the essential functions of SUMO in S. cerevisiae.SUMOs are ubiquitin-related proteins that function by being covalently attached to other proteins as post-translational modifications. SUMO conjugation is essential for viability of most eukaryotic cells and participates in many cellular processes including transcription, DNA repair, chromatin organization, nuclear transport, signal transduction, and the cell cycle (1-3). SUMO conjugation acts by different mechanisms on different substrates but does not directly target proteins for proteasome-dependent proteolysis.SUMO, like ubiquitin (Ub), 1 is linked to its substrates via an amide bond between its C-terminal carboxyl group and the ⑀-amino group of a lysine residue in the substrate (1-3). SUMOs share only ϳ18% sequence identity with Ub but contain a C-terminal domain with a Ub-fold that is virtually superimposable on the structure of Ub. SUMOs also contain a ϳ20-residue non-Ub-related N-terminal extension. Saccharomyces cerevisiae contains a single SUMO protein encoded by the SMT3 gene, while mammals contain three different SUMOs: SUMO-2 and SUMO-3, which are 95% identical to each other, and SUMO-1. SUMO attachment is catalyzed by a three-step enzyme pathway, analogous to the Ub pathway, consisting of the heterodimeric SUMO-activating enzyme (E1) Uba2⅐Aos1, the SUMO-conjugating enzyme (E2) Ubc9, and several different SUM...
Covalent histone post-translational modifications such as acetylation, methylation, phosphorylation, and ubiquitylation play pivotal roles in regulating many cellular processes, including transcription, response to DNA damage, and epigenetic control. Although positive-acting post-translational modifications have been studied in Saccharomyces cerevisiae, histone modifications that are associated with transcriptional repression have not been shown to occur in this yeast. Here, we provide evidence that histone sumoylation negatively regulates transcription in S. cerevisiae. We show that all four core histones are sumoylated and identify specific sites of sumoylation in histones H2A, H2B, and H4. We demonstrate that histone sumoylation sites are involved directly in transcriptional repression. Further, while histone sumoylation occurs at all loci tested throughout the genome, slightly higher levels occur proximal to telomeres. We observe a dynamic interplay between histone sumoylation and either acetylation or ubiquitylation, where sumoylation serves as a potential block to these activating modifications. These results indicate that sumoylation is the first negative histone modification to be identified in S. cerevisiae and further suggest that sumoylation may serve as a general dynamic mark to oppose transcription.
Saccharomyces cerevisiae contains two Siz/PIAS SUMO E3 ligases, Siz1 and Siz2/Nfi1, and one other known ligase, Mms21. Although ubiquitin ligases are highly substrate-specific, the degree to which SUMO ligases target distinct sets of substrates is unknown. Here we show that although Siz1 and Siz2 each have unique substrates in vivo, sumoylation of many substrates can be stimulated by either protein. Furthermore, in the absence of both Siz proteins, many of the same substrates are still sumoylated at low levels. Some of this residual sumoylation depends on MMS21. Siz1 targets its unique substrates through at least two distinct domains. Sumoylation of PCNA (proliferating cell nuclear antigen) and the splicing factor Prp45 requires part of the N-terminal region of Siz1, the `PINIT' domain, whereas sumoylation of the bud neck-associated septin proteins Cdc3, Cdc11 and Shs1/Sep7 requires the C-terminal domain of Siz1, which is also sufficient for cell cycle-dependent localization of Siz1 to the bud neck. Remarkably, the non-sumoylated septins Cdc10 and Cdc12 also undergo Siz1-dependent sumoylation if they are fused to the short ΨKXE SUMO attachment-site sequence. Collectively, these results suggest that local concentration of the E3, rather than a single direct interaction with the substrate polypeptide, is the major factor in substrate selectivity by Siz proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.