The Herschel Multi‐tiered Extragalactic Survey (HerMES) is a legacy programme designed to map a set of nested fields totalling ∼380 deg2. Fields range in size from 0.01 to ∼20 deg2, using the Herschel‐Spectral and Photometric Imaging Receiver (SPIRE) (at 250, 350 and 500 μm) and the Herschel‐Photodetector Array Camera and Spectrometer (PACS) (at 100 and 160 μm), with an additional wider component of 270 deg2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the reprocessed optical and ultraviolet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multiwavelength understanding of galaxy formation and evolution. The survey will detect of the order of 100 000 galaxies at 5σ in some of the best‐studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X‐ray wavelengths, it is designed to facilitate redshift determination, rapidly identify unusual objects and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include the total infrared emission of galaxies, the evolution of the luminosity function, the clustering properties of dusty galaxies and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.
We set out to determine the ratio, q IR , of rest-frame 8-1000-μm flux, S IR , to monochromatic radio flux, S 1.4 GHz , for galaxies selected at far-infrared (IR) and radio wavelengths, to search for signs that the ratio evolves with redshift, luminosity or dust temperature, T d , and to identify any far-IR-bright outliers -useful laboratories for exploring why the far-IR/radio correlation (FIRRC) is generally so tight when the prevailing theory suggests variations are almost inevitable. We use flux-limited 250-μm and 1.4-GHz samples, obtained using Herschel and the Very Large Array (VLA) in GOODS-North (-N). We determine bolometric IR output using ten bands spanning λ obs = 24−1250 μm, exploiting data from PACS and SPIRE (PEP; HerMES), as well as Spitzer, SCUBA, AzTEC and MAMBO. We also explore the properties of an L IR -matched sample, designed to reveal evolution of q IR with redshift, spanning log L IR = 11-12 L and z = 0−2, by stacking into the radio and far-IR images. For 1.4-GHz-selected galaxies in GOODS-N, we see tentative evidence of a break in the flux ratio, q IR , at L 1.4 GHz ∼ 10 22.7 W Hz −1 , where active galactic nuclei (AGN) are starting to dominate the radio power density, and of weaker correlations with redshift and T d . From our 250-μm-selected sample we identify a small number of far-IR-bright outliers, and see trends of q IR with L 1.4 GHz , L IR , T d and redshift, noting that some of these are inter-related. For our L IR -matched sample, there is no evidence that q IR changes significantly as we move back into the epoch of galaxy formation: we find q IR ∝ (1 + z) γ , where γ = −0.04 ± 0.03 at z = 0 − 2; however, discounting the least reliable data at z < 0.5 we find γ = −0.26 ± 0.07, modest evolution which may be related to the radio background seen by ARCADE 2, perhaps driven by <10-μJy radio activity amongst ordinary star-forming galaxies at z > 1.
Emission at far-infrared wavelengths makes up a significant fraction of the total light detected from galaxies over the age of Universe. Herschel provides an opportunity for studying galaxies at the peak wavelength of their emission. Our aim is to provide a benchmark for models of galaxy population evolution and to test pre-existing models of galaxies. With the Herschel Multi-tiered Extra-galactic survey, HerMES, we have observed a number of fields of different areas and sensitivity using the SPIRE instrument on Herschel. We have determined the number counts of galaxies down to ∼20 mJy. Our constraints from directly counting galaxies are consistent with, though more precise than, estimates from the BLAST fluctuation analysis. We have found a steep rise in the Euclidean normalised counts <100 mJy. We have directly resolved ∼15% of the infrared extra-galactic background at the wavelength near where it peaks.
We present the cross-identification and source photometry techniques used to process Herschel SPIRE imaging taken as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES). Cross-identifications are performed in map-space so as to minimize source-blending effects. We make use of a combination of linear inversion and model selection techniques to produce reliable cross-identification catalogues based on Spitzer MIPS 24-??m source positions. Testing on simulations and real Herschel observations shows that this approach gives robust results for even the faintest sources (S250??? 10 mJy). We apply our new technique to HerMES SPIRE observations taken as part of the science demonstration phase of Herschel. For our real SPIRE observations, we show that, for bright unconfused sources, our flux density estimates are in good agreement with those produced via more traditional point source detection methods (SUSSEXtractor) by Smith et al. When compared to the measured number density of sources in the SPIRE bands, we show that our method allows the recovery of a larger fraction of faint sources than these traditional methods. However, this completeness is heavily dependent on the relative depth of the existing 24-??m catalogues and SPIRE imaging. Using our deepest multiwavelength data set in the GOODS-N, we estimate that the use of shallow 24-??m catalogues in our other fields introduces an incompleteness at faint levels of between 20???40 per cent at 250 ??m
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.