The development and refinement of array comparative genomic hybridization has led to expanded applications as a diagnostic tool. Recent reports suggest a high diagnostic yield for array comparative genomic hybridization in autism spectrum disorders. The objective of this study was to determine the diagnostic yield in array comparative genomic hybridization for autism at the University of Nebraska Medical Center. The authors report the diagnostic yield of array comparative genomic hybridization in 89 samples with a primary indication of autism. Clinical information was reviewed for 89 identified cases. Twenty-one cases were excluded because of ambiguous information regarding the diagnosis, a diagnosis other than autism, or abnormal karyotype. Of 68 cases referred for array comparative genomic hybridization testing with a primary indication of autism, 14 (21%) had abnormal findings. This study supports array comparative genomic hybridization in the etiologic evaluation of autism and elevation of array to a first tier diagnostic test.
BackgroundShunt infection is a frequent and serious complication in the surgical treatment in hydrocephalus. Previous studies have shown an attenuated immune response to these biofilm-mediated infections. We proposed that IL-10 reduces the inflammatory response to Staphylococcus epidermidis (S. epidermidis) CNS catheter infection.MethodsIn this study, a murine model of catheter-associated S. epidermidis biofilm infection in the CNS was generated based on a well-established similar model for S. aureus. The catheters were pre-coated with a clinically derived biofilm-forming strain of S. epidermidis (strain 1457) which were then stereotactically implanted into the lateral left ventricle of 8-week-old C57BL/6 and IL-10 knockout (IL-10 knockout) mice. Bacterial titers as well as cytokine and chemokine levels were measured at days 3, 5, 7, and 10 in mice implanted with sterile and S. epidermidis-coated catheters.ResultsCultures demonstrated a catheter-associated and parenchymal infection that persisted through 10 days following infection. Cytokine analysis of the tissue surrounding the catheters revealed greater levels of IL-10, an anti-inflammatory cytokine, in the infected group compared to the sterile. In IL-10 KO mice, we noted no change in bacterial burdens, showing that IL-10 is not needed to control the infection in a CNS catheter infection model. However, IL-10 KO mice had increased levels of pro-inflammatory mediators in the tissues immediately adjacent to the infected catheter, as well as an increase in weight loss.ConclusionsTogether our results indicate that IL-10 plays a key role in regulating the inflammatory response to CNS catheter infection but not in control of bacterial burdens. Therefore, IL-10 may be a useful therapeutic target for immune modulation in CNS catheter infection but this should be used in conjunction with antibiotic therapy for bacterial eradication.
BackgroundCerebrospinal fluid (CSF) shunt placement is frequently complicated by bacterial infection. Shunt infection diagnosis relies on bacterial culture of CSF which can often produce false-negative results. Negative cultures present a conundrum for physicians as they are left to rely on other CSF indices, which can be unremarkable. New methods are needed to swiftly and accurately diagnose shunt infections. CSF chemokines and cytokines may prove useful as diagnostic biomarkers. The objective of this study was to evaluate the potential of systemic and CSF biomarkers for identification of CSF shunt infection.MethodsWe conducted a retrospective chart review of children with culture-confirmed CSF shunt infection at Children’s Hospital and Medical Center from July 2013 to December 2015. CSF cytokine analysis was performed for those patients with CSF in frozen storage from the same sample that was used for diagnostic culture.ResultsA total of 12 infections were included in this study. Patients with shunt infection had a median C-reactive protein (CRP) of 18.25 mg/dL. Median peripheral white blood cell count was 15.53 × 103 cells/mL. Those with shunt infection had a median CSF WBC of 332 cells/mL, median CSF protein level of 406 mg/dL, and median CSF glucose of 35.5 mg/dL. An interesting trend was observed with gram-positive infections having higher levels of the anti-inflammatory cytokine interleukin (IL)-10 as well as IL-17A and vascular endothelial growth factor (VEGF) compared to gram-negative infections, although these differences did not reach statistical significance. Conversely, gram-negative infections displayed higher levels of the pro-inflammatory cytokines IL-1β, fractalkine (CX3CL1), chemokine ligand 2 (CCL2), and chemokine ligand 3 (CCL3), although again these were not significantly different. CSF from gram-positive and gram-negative shunt infections had similar levels of interferon gamma (INF-γ), tumor necrosis factor alpha (TNF-α), IL-6, and IL-8.ConclusionsThis pilot study is the first to characterize the CSF cytokine profile in patients with CSF shunt infection and supports the distinction of chemokine and cytokine profiles between gram-negative and gram-positive infections. Additionally, it demonstrates the potential of CSF chemokines and cytokines as biomarkers for the diagnosis of shunt infection.
To determine the association of the use of the multiplex assay meningitis/ encephalitis panel with clinical management of suspected meningitis. METHODS:A cross-sectional study was conducted with children 0 to 18 years of age who received a lumbar puncture within 48 hours of admission for an infectious workup. Patient demographic and presenting information, laboratory studies, and medication administration were collected. The primary measure was length of stay (LOS) with secondary measures: time on antibiotics, time to narrowing antibiotics, and acyclovir doses. LOS and antibiotic times were stratified for outcomes occurring before 36 hours. Logistic regression analysis was used to account for potential confounding factors associated with both the primary and secondary outcomes. A value of P , .05 was considered statistically significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.