A central challenge in microbial ecology is to understand the underlying mechanisms driving community assembly, particularly in the continuum of species sorting and dispersal limitation. However, little is known about the relative importance of species sorting and dispersal limitation in shaping marine microbial communities; especially, how they are related to organism types/traits and water depth. Here, we used variation partitioning and null model analysis to compare mechanisms driving bacterial and protist metacommunity dynamics at the basin scale in the East China Sea, based on MiSeq paired-end sequencing of 16S ribosomal DNA (rDNA) and 18S rDNA, respectively, in surface, deep chlorophyll maximum and bottom layers. Our analyses indicated that protist communities were governed more strongly by species sorting relative to dispersal limitation than were bacterial communities; this pattern was consistent across the three-depth layers, albeit to different degrees. Furthermore, we detected that bacteria exhibited wider habitat niche breadths than protists, whereas, passive dispersal abilities were not appreciably different between them. Our findings support the 'size-plasticity' hypothesis: smaller organisms (bacteria) are less environment filtered than larger organisms (protists), as smaller organisms are more likely to be plastic in metabolic abilities and have greater environmental tolerance.
Anoxia and hypoxia have been widely observed in estuarine and coastal regions over the past few decades; however, few reports have focused on the East China Sea (ECS). In June and August 2003, two cruises sampled at stations covering almost the entire shelf of the ECS to examine hypoxic events and their potential causes. In August, DO concentrations <2-3 mg l(-1) covered an area estimated at greater than 12,000 km(2) (or 432 km(3) volume). In contrast, water column DO concentrations exceeded 4 mg l(-1) throughout most of the shelf region. A sharp density gradient was observed under the mixed layer in August, restricting vertical re-aeration across this strong pycnocline. Oxygen depletion events, such as that described here for the ECS shelf, are fueled by decomposition of newly produced marine and river-borne biogenic substances (as well as older residual organic matter) deposited to the bottom waters.
[1] Planktonic communities tend to flourish on the western margins of the East China Sea (ECS) fueled by substrates delivered largely from the Changjiang River, the fifth largest river in the world. To study the effects of the Changjiang River discharge on planktonic community respiration (CR), physical-chemical variables and key processes were measured in three consecutive summers in the ECS. Results showed that concentrations of nitrate and Chl a, protozoan biomass, bacterial production, as well as CR in the surface water were all negatively correlated with sea surface salinity, reflecting the strong influence of river discharge on the ECS shelf ecosystem. Moreover, mean values of nitrate, Chl a concentrations, and CR rates were proportionally related to the area of Changjiang diluted water (CDW; salinity 31.0 practical salinity units (psu)), an index of river discharge rate. Presumably, higher river flow delivers higher nutrient concentrations which stimulate phytoplankton growth, which in turn fuels CR. CR exhibited significant monthly and interannual variability, and rates appear to be dominated by bacteria and phytoplankton. Although the plankton community was relatively productive (mean = 0.8 mg C m À2 d
À1) in the CDW, the mean ratio of production to respiration was low (0.42). This suggests that the heterotrophic processes regulating CR were supported by riverine organic carbon input in addition to in situ autotrophic production.
The occurrence of extreme weather conditions appears on the rise under current climate change conditions, resulting in more frequent and severe floods. The devastating floods in southern China in 2010 and eastern Australia 2010–2011, serve as a solemn testimony to that notion. Accompanying the excess runoffs, elevated amount of terrigenous materials, including nutrients for microalgae, are discharged to the coastal ocean. However, how these floods and the materials they carry affect the coastal ocean ecosystem is still poorly understood. Yangtze River (aka Changjiang), which is the largest river in the Eurasian continent, flows eastward and empties into the East China Sea. Since the early twentieth century, serious overflows of the Changjiang have occurred four times. During the two most recent ones in July 1998 and 2010, we found total primary production in the East China Sea reaching 147 × 103 tons carbon per day, which may support fisheries catch as high as 410 × 103 tons per month, about triple the amount during non‐flooding periods based on direct field oceanographic observations. As the frequencies of floods increase world wide as a result of climate change, the flood‐induced biological production could be a silver lining to the hydrological hazards and human and property losses inflicted by excessive precipitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.