Summary An adjoint-based conjugate gradient algorithm provides an efficient means for imaging sources of deformation within the Earth, such as volume stresses associated with fluid flow in aquifers and reservoirs. For time intervals over which the overburden deforms elastically, one can calculate the gradient elements for a single model update using just two numerical simulations. The first is a forward run that is used to compute the residuals associated with the given iteration. The second simulation is to evaluate the application of the adjoint operator to the residuals. In this adjoint calculation, the residual displacements are applied as sources at the measurement locations, driving the deformation in the simulation. The volume stress on the source grid blocks, in response to the residual displacements, provide the gradient components. We apply this technique to satellite-based interferometric synthetic aperture radar (InSAR) line-of-sight displacements that were observed over an oil reservoir in California’s Central Valley. We find that the adjoint-based gradient estimates, requiring 18 CPU seconds, agree with conventional numerical calculations that take over 3700 CPU seconds to compute. Conjugate gradient algorithms utilizing the conventional approach and adjoint-based gradient computations give roughly the same reductions in misfit and similar final estimates of reservoir volume change.
Fiber optic technology has been used in several wells at an oilfield to measure strain to monitor overburden deformation. The application of this technology involved a series of bench tests and field tests to gather some key learnings to enhance well design, well construction, and fiber optic operation. Prior to installation of the fiber optic, a series of bench tests were conducted to evaluate the coupling of fiber with the capillary lines to determine its impact on the measurement of strain. The testing demonstrated that anchoring the fiber at the top and bottom of the capillary line was sufficient to hold the fiber in place and enabled the effective measurement of strain along the length of the well, which was proven when applied to field conditions. To enhance well design for strain measurement, several wells had fiber optic capillary lines installed on the inside and outside of casing to investigate the potential dampening effect due to fiber being located inside a string of casing. This was used to determine the optimal casing string to install fiber optic to measure strain in the overburden. Additionally, a novel concept was utilized in the well design that involved using the fiber optic capillary clamps as borehole centralizers, which resulted in equipment and rig cost savings. The details of the bench tests, well design, operational experience, and their associated lessons learned are presented.
Summary Interferometric synthetic aperture radar (InSAR) data provide a measurement of the Earth’s surface displacements to monitor reservoir stresses, fluid pressure, and volume changes. However, the InSAR measurements may suffer from poor sensitivity and resolution. To improve the sensitivity of the InSAR data and localize the effects of the near-surface overburden, we employ a Green’s function retrieval (GFR) approach that uses time-lapse InSAR data. In this work, we derive the equations and compute the sensitivity between InSAR displacements caused by the reservoir changes with respect to observation points (i.e., virtual sources) at the surface. We present this method with time-lapse InSAR data from an oil field in the San Joaquin Valley to demonstrate the improved resolution of the GFR-InSAR measurements for subsurface imaging and continuous reservoir monitoring with applications to development, production, and subsurface integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.