Y. Benoist proved that if a closed three-manifold M admits an indecomposable convex real projective structure, then M is topologically the union along tori and Klein bottles of finitely many sub-manifolds each of which admits a complete finite volume hyperbolic structure on its interior. We describe some initial results in the direction of a potential converse to Benoist's theorem. We show that a cusped hyperbolic three-manifold may, under certain assumptions, be deformed to convex projective structures with totally geodesic torus boundary. Such structures may be convexly glued together whenever the geometry at the boundary matches up. In particular, we prove that many doubles of cusped hyperbolic three-manifolds admit convex projective structures.
By using Klein's model for hyperbolic geometry, hyperbolic structures on orbifolds or manifolds provide examples of real projective structures. By Andreev's theorem, many 3-dimensional reflection orbifolds admit a finite volume hyperbolic structure, and such a hyperbolic structure is unique. However, the induced real projective structure on some such 3-orbifolds deforms into a family of real projective structures that are not induced from hyperbolic structures. In this paper, we find new classes of compact and complete hyperbolic reflection 3-orbifolds with such deformations. We also explain numerical and exact results on projective deformations of some compact hyperbolic cubes and dodecahedra.
We extend the notion of Hitchin component from surface groups to orbifold groups and prove that this gives new examples of higher Teichmüller spaces. We show that the Hitchin component of an orbifold group is homeomorphic to an open ball and we compute its dimension explicitly. We then give applications to the study of the pressure metric, cyclic Higgs bundles, and the deformation theory of real projective structures on 3-manifolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.