Compared with the large plastic deformation observed in ductile metals and organic materials, inorganic semiconductors have limited plasticity (<0.2%) due to their intrinsic bonding characters, restricting their widespread applications in stretchable electronics. Herein, the solution‐processed synthesis of ductile α‐Ag2S thin films and fabrication of all‐inorganic, self‐powered, and stretchable memory devices, is reported. Molecular Ag2S complex solution is synthesized by chemical reduction of Ag2S powder, fabricating wafer‐scale highly crystalline Ag2S thin films. The thin films show stretchability due to the intrinsic ductility, sustaining the structural integrity at a tensile strain of 14.9%. Moreover, the fabricated Ag2S‐based resistive random access memory presents outstanding bipolar switching characteristics (Ion/Ioff ratio of ≈105, operational endurance of 100 cycles, and retention time >106 s) as well as excellent mechanical stretchability (no degradation of properties up to stretchability of 52%). Meanwhile, the device is highly durable under diverse chemical environments and temperatures from −196 to 300 °C, especially maintaining the properties for 168 h in 85% relative humidity and 85 °C. A self‐powered memory combined with motion sensors for use as a wearable healthcare monitoring system is demonstrated, offering the potential for designing high‐performance wearable electronics that are usable in daily life in a real‐world setting.
Biodegradable electronics are disposable green devices whose constituents decompose into harmless byproducts, leaving no residual waste and minimally invasive medical implants requiring no removal surgery. Stretchable and flexible form factors are essential in biointegrated electronic applications for conformal integration with soft and expandable skins, tissues, and organs. Here a fully biodegradable MgZnCa metallic glass (MG) film is proposed for intrinsically stretchable electrodes with a high yield limit exploiting the advantages of amorphous phases with no crystalline defects. The irregular dissolution behavior of this amorphous alloy regarding electrical conductivity and morphology is investigated in aqueous solutions with different ion species. The MgZnCa MG nanofilm shows high elastic strain (≈2.6% in the nano-tensile test) and offers enhanced stretchability (≈115% when combined with serpentine geometry). The fatigue resistance in repeatable stretching also improves owing to the wide range of the elastic strain limit. Electronic components including the capacitor, inductor, diode, and transistor using the MgZnCa MG electrode support its integrability to transient electronic devices. The biodegradable triboelectric nanogenerator of MgZnCa MG operates stably over 50 000 cycles and its fatigue resistant applications in mechanical energy harvesting are verified. In vitro cell toxicity and in vivo inflammation tests demonstrate the biocompatibility in biointegrated use.
Aligned wavy-structured thermally grown silicon dioxide films are fabricated for stretchable encapsulation films. Uniaxial stretchability is investigated with micromechanics modeling, which can elucidate the stretchability arising from the wavy structure and the properties of the materials. The wavy-structured films with optimum combinations of film thickness and wavy structure show 20.1% of uniaxial stretchability and 1.11 × 10 −6 g m −2 day −1 of water vapor transmission rate (WVTR), simultaneously. It shows highly reliable barrier properties even after 1000 stretching cycles at 90% of their stretchability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.