A three-dimensional combined finite-discrete element element method (FDEM), parallelized by a general-purpose graphic-processing-unit (GPGPU), was applied to identify the fracture process of rough concrete–rock joints under direct shearing. The development process of shear resistance under the complex interaction between the rough concrete–rock joint surfaces, i.e., asperity dilatation, sliding, and degradation, was numerically simulated in terms of various asperity roughness under constant normal confinement. It was found that joint roughness significantly affects the development of overall joint shear resistance. The main mechanism for the joint shear resistance was identified as asperity sliding in the case of smoother joint roughness and asperity degradation in the case of rougher joint asperity. Moreover, it was established that the bulk internal friction angle increased with asperity angle increments in the Mohr–Coulomb criterion, and these results follow Patton’s theoretical model. Finally, the friction coefficient in FDEM appears to be an important parameter for simulating the direct shear test because the friction coefficient affects the bulk shear strength as well as the bulk internal friction angle. In addition, the friction coefficient of the rock–concrete joints contributes to the variation of the internal friction angle at the smooth joint than the rough joint.
Vegetation has become very important decision-making information in promoting tasks such as urban regeneration, urban planning, environment, and landscaping. In the past, the vegetation index was calculated by combining images of various wavelength regions mainly acquired from the Landsat satellite’s TM or ETM+ sensor. Recently, a technology using UAV-based multispectral images has been developed to obtain more rapid and precise vegetation information. NDVI is a method of calculating the vegetation index by combining the red and near-infrared bands, and is currently the most widely used. In this study, NDVI was calculated using UAV-based multispectral images to classify vegetation. However, among the areas analyzed using NDVI, there was a problem that areas coated with urethane, such as basketball courts and waterproof coating roofs, were classified as vegetation areas. In order to examine these problems, the reflectance of each land cover was investigated using the ASD FieldSpec4 spectrometer. As a result of analyzing the spectrometer measurements, the NDVI values of basketball courts and waterproof coating roofs were similar to those of grass with slightly lower vegetation. To solve this problem, the temperature characteristics of the target site were analyzed using UAV-based thermal infrared images, and vegetation area was analyzed by combining the temperature information with NDVI. To evaluate the accuracy of the vegetation classification technology, 4409 verification points were selected, and kappa coefficients were analyzed for the method using only NDVI and the method using NDVI and thermal infrared images. Compared to the kappa coefficient of 0.830, which was analyzed by applying only NDVI, the kappa coefficient, which was analyzed by combining NDVI and thermal infrared images, was 0.934, which was higher. Therefore, it is very effective to apply a technology that classifies vegetation by combining NDVI and thermal infrared images in urban areas with many urethane-coated land cover such as basketball courts or waterproof coating roofs.
For an underground excavation at depth in highly stressful conditions, it is important to mitigate the risk of stress-induced failure, e.g., rockburst, and improve miner safety concerning the stability of underground workplaces and the prevention of fatalities. In general, the cause of rockburst is classified into three categories: strainburst due to stress-induced fracturing, rock ejection by seismic energy transfer, and rockfall associated with mining-induced seismicity. In this study, the Split Hopkinson Pressure Bar (SHPB) modified configuration of bar drop apparatus was developed by attaching a direct shear test box and a long bar. As a result, the modified bar drop system enabled to replicate and control of a seismic velocity that was an incident on the joint rock surfaces installed in the direct shear testing box. The long bar installed in the modified bar drop system provides a longer stress wavelength to overcome the relatively shorter duration of the stress waves in the SHPB system. The dynamic shear test on the jointed rock samples using the bar drop apparatus also provided the information to estimate the rock joint shear strengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.