Natural hazard prediction and efficient crust exploration require dense seismic observations both in time and space. Seismological techniques provide ground-motion data, whose accuracy depends on sensor characteristics and spatial distribution. Here we demonstrate that dynamic strain determination is possible with conventional fibre-optic cables deployed for telecommunication. Extending recently distributed acoustic sensing (DAS) studies, we present high resolution spatially un-aliased broadband strain data. We recorded seismic signals from natural and man-made sources with 4-m spacing along a 15-km-long fibre-optic cable layout on Reykjanes Peninsula, SW-Iceland. We identify with unprecedented resolution structural features such as normal faults and volcanic dykes in the Reykjanes Oblique Rift, allowing us to infer new dynamic fault processes. Conventional seismometer recordings, acquired simultaneously, validate the spectral amplitude DAS response between 0.1 and 100 Hz bandwidth. We suggest that the networks of fibre-optic telecommunication lines worldwide could be used as seismometers opening a new window for Earth hazard assessment and exploration.
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Geysers are hot springs whose frequency of water eruptions remain poorly understood. We set up a local broadband seismic network for 1 year at Strokkur geyser, Iceland, and developed an unprecedented catalog of 73,466 eruptions. We detected 50,135 single eruptions but find that the geyser is also characterized by sets of up to six eruptions in quick succession. The number of single to sextuple eruptions exponentially decreased, while the mean waiting time after an eruption linearly increased (3.7 to 16.4 min). While secondary eruptions within double to sextuple eruptions have a smaller mean seismic amplitude, the amplitude of the first eruption is comparable for all eruption types. We statistically model the eruption frequency assuming discharges proportional to the eruption multiplicity and a constant probability for subsequent events within a multituple eruption. The waiting time after an eruption is predictable but not the type or amplitude of the next one.
The eruption frequency of geysers can be studied easily on the surface. However, details of the internal structure including possible water and gas filled chambers feeding eruptions and the driving mechanisms often remain elusive. We used a multidisciplinary network of seismometers, video cameras, water pressure sensors and one tiltmeter to study the eruptive cycle, internal structure, and mechanisms driving the eruptive cycle of Strokkur geyser in June 2018. An eruptive cycle at Strokkur always consists of four phases: (1) Eruption, (2) post‐eruptive conduit refilling, (3) gas filling of the bubble trap, and (4) regular bubble collapse at shallow depth in the conduit. For a typical single eruption 19 ± 4 bubble collapses occur in Phase 3 and 8 ± 2 collapses in Phase 4 at a mean spacing of 1.52 ± 0.29 and 24.5 ± 5.9 s, respectively. These collapses release latent heat to the fluid in the bubble trap (Phase 3) and later to the fluid in the conduit (Phase 4). The latter eventually reaches thermodynamic conditions for an eruption. Single to sextuple eruptions have similar spacings between bubble collapses and are likely fed from the same bubble trap at 23.7 ± 4.4 m depth, 13–23 m west of the conduit. However, the duration of the eruption and recharging phase linearly increases likely due to a larger water, gas and heat loss from the system. Our tremor data provides documented evidence for a bubble trap beneath a pool geyser.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.