This paper proposes a method for calculating the tilt angle of the tool and the machining strip width when the tool is inclined to the feed direction. Tilt angle of the tool and machining strip width are important factors which affect feed rate and machining quality in five-axis flat-end milling for free surface. There are some methods to calculate the tilt angle of the tool in five-axis flat-end milling for free surface, but mathematically complicated algorithm is applied to the calculation of tilt angle of the tool, so it is difficult to apply it in practice. We considered the geometry of the surface and the tool as well as the scallop height to determine the tool tilt angle, thus ensuring the tool to be contacted with the surface at two points. This allows us to calculate the tool tilt angle and the machining strip width by solving quadric equations based on the contact circle. Moreover, tool tilt angle and machining strip width are calculated analytically. Thus the speed of calculation is quick and easy to implement. An experiment of machining on the biquantic B-spline surface was performed and the results show that the proposed method has considerably higher machining efficiency than the CMM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.