This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design.
In this article, we present an effective approach to calculate quantum chemical two-electron integrals over basis sets consisting of Gaussian-type basis functions on graphical processing unit (GPU). Our framework generates several different variants called routes to the same integral problem with different integral algorithms (McMurchie−Davidson, Head-Gordon−Pople, and Rys) and precision. Each route is benchmarked on more GPU architectures, and with this data, a model is fitted to select the best available route for an integral task given a GPU architecture. Moreover, this approach supports the computation of high angular momentum orbitals up to g effectively on GPU, tested up to cc-pVQZ-sized basis sets. Rigorous analysis is shown regarding the effectiveness of our method. Molecule simulations with several basis sets are measured using NVIDIA GTX 1080 Ti, NVIDIA P100, and NVIDIA V100 cards.
Pandemic management requires reliable and efficient dynamical simulation to predict and control disease spreading. The COVID-19 (SARS-CoV-2) pandemic is mitigated by several non-pharmaceutical interventions, but it is hard to predict which of these are the most effective for a given population. We developed the computationally effective and scalable, agent-based microsimulation framework PanSim, allowing us to test control measures in multiple infection waves caused by the spread of a new virus variant in a city-sized societal environment using a unified framework fitted to realistic data. We show that vaccination strategies prioritising occupational risk groups minimise the number of infections but allow higher mortality while prioritising vulnerable groups minimises mortality but implies an increased infection rate. We also found that intensive vaccination along with non-pharmaceutical interventions can substantially suppress the spread of the virus, while low levels of vaccination, premature reopening may easily revert the epidemic to an uncontrolled state. Our analysis highlights that while vaccination protects the elderly from COVID-19, a large percentage of children will contract the virus, and we also show the benefits and limitations of various quarantine and testing scenarios. The uniquely detailed spatio-temporal resolution of PanSim allows the design and testing of complex, specifically targeted interventions with a large number of agents under dynamically changing conditions.
SUMMARYIn this paper, we present a new type of cellular nonlinear network (CNN) model and FPGA implementation of cellular nonlinear network universal machine. Our approach uses stochastic bitstreams as data carriers. With the help of stochastic data streams more complex nonlinear cell interactions can be realized than conventional CNN hardware implementations have. The accuracy as indexed by bit depth resolution can be improved at the expense of computation time without influencing hardware complexity. Our simulation results prove the universality and utility of the model. Our experimental results show that the proposed model can be implemented on an FPGA hardware.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.