Oak galls are spectacular extended phenotypes of gallwasp genes in host oak tissues and have evolved complex morphologies that serve, in part, to exclude parasitoid natural enemies.Parasitoids and their insect herbivore hosts have coevolved to produce diverse communities comprising about a third of all animal species. The factors structuring these communities, however, remain poorly understood. An emerging theme in community ecology is the need to consider the effects of host traits, shaped by both natural selection and phylogenetic history, on associated communities of natural enemies. Here we examine the impact of host traits and phylogenetic relatedness on 48 ecologically closed and species-rich communities of parasitoids attacking gall-inducing wasps on oaks. Gallwasps induce the development of spectacular and structurally complex galls whose species- and generation-specific morphologies are the extended phenotypes of gallwasp genes. All the associated natural enemies attack their concealed hosts through gall tissues, and several structural gall traits have been shown to enhance defence against parasitoid attack. Here we explore the significance of these and other host traits in predicting variation in parasitoid community structure across gallwasp species. In particular, we test the “Enemy Hypothesis,” which predicts that galls with similar morphology will exclude similar sets of parasitoids and therefore have similar parasitoid communities. Having controlled for phylogenetic patterning in host traits and communities, we found significant correlations between parasitoid community structure and several gall structural traits (toughness, hairiness, stickiness), supporting the Enemy Hypothesis. Parasitoid community structure was also consistently predicted by components of the hosts' spatiotemporal niche, particularly host oak taxonomy and gall location (e.g., leaf versus bud versus seed). The combined explanatory power of structural and spatiotemporal traits on community structure can be high, reaching 62% in one analysis. The observed patterns derive mainly from partial niche specialisation of highly generalist parasitoids with broad host ranges (>20 hosts), rather than strict separation of enemies with narrower host ranges, and so may contribute to maintenance of the richness of generalist parasitoids in gallwasp communities. Though evolutionary escape from parasitoids might most effectively be achieved via changes in host oak taxon, extreme conservatism in this trait for gallwasps suggests that selection is more likely to have acted on gall morphology and location. Any escape from parasitoids associated with evolutionary shifts in these traits has probably only been transient, however, due to subsequent recruitment of parasitoid species already attacking other host galls with similar trait combinations.
Many studies have addressed the latitudinal gradients in intraspecific genetic diversity of European taxa generated during postglacial range expansion from southern refugia. Although Asia Minor is known to be a centre of diversity for many taxa, relatively few studies have considered its potential role as a Pleistocene refugium or a potential source for more ancient westward range expansion into Europe. Here we address these issues for an oak gallwasp, Andricus quercustozae (Hymenoptera: Cynipidae), whose distribution extends from Morocco along the northern coast of the Mediterranean through Turkey to Iran. We use sequence data for a fragment of the mitochondrial gene cytochrome b and allele frequency data for 12 polymorphic allozyme loci to answer the following questions: (1). which regions represent current centres of genetic diversity for A. quercustozae? Do eastern populations represent one refuge or several discrete glacial refugia? (2). Can we infer the timescale and sequence of the colonization processes linking current centres of diversity? Our results suggest that A. quercustozae was present in five distinct refugia (Iberia, Italy, the Balkans, southwestern Turkey and northeastern Turkey) with recent genetic exchange between Italy and Hungary. Genetic diversity is greatest in the Turkish refugia, suggesting that European populations are either (a). derived from Asia Minor, or (b). subject to more frequent population bottlenecks. Although Iberian populations show the lowest diversity for putatively selectively neutral markers, they have colonized a new oak host and represent a genetically and biologically discrete entity within the species.
How geographically widespread biological communities assemble remains a major question in ecology. Do parallel population histories allow sustained interactions (such as host-parasite or plant-pollinator) among species, or do discordant histories necessarily interrupt them? Though few empirical data exist, these issues are central to our understanding of multispecies evolutionary dynamics. Here we use hierarchical approximate Bayesian analysis of DNA sequence data for 12 herbivores and 19 parasitoids to reconstruct the assembly of an insect community spanning the Western Palearctic and assess the support for alternative host tracking and ecological sorting hypotheses. We show that assembly occurred primarily by delayed host tracking from a shared eastern origin. Herbivores escaped their enemies for millennia before parasitoid pursuit restored initial associations, with generalist parasitoids no better able to track their hosts than specialists. In contrast, ecological sorting played only a minor role. Substantial turnover in host-parasitoid associations means that coevolution must have been diffuse, probably contributing to the parasitoid generalism seen in this and similar systems. Reintegration of parasitoids after host escape shows these communities to have been unsaturated throughout their history, arguing against major roles for parasitoid niche evolution or competition during community assembly.
Human dispersal of organisms is an important process modifying natural patterns of biodiversity. Such dispersal generates new patterns of genetic diversity that overlie natural phylogeographical signatures, allowing discrimination between alternative dispersal mechanisms. Here we use allele frequency and DNA sequence data to distinguish between alternative scenarios (unassisted range expansion and long range introduction) for the colonization of northern Europe by an oak-feeding gallwasp, Andricus kollari. Native to Mediterranean latitudes from Portugal to Iran, this species became established in northern Europe following human introduction of a host plant, the Turkey oak Quercus cerris. Colonization of northern Europe is possible through three alternative routes: (i) unassisted range expansion from natural populations in the Iberian Peninsula; (ii) unassisted range expansion from natural populations in Italy and Hungary; or (iii) descent from populations imported to the UK as trade goods from the eastern Mediterranean in the 1830s. We show that while populations in France were colonized from sources in Italy and Hungary, populations in the UK and neighbouring parts of coastal northern Europe encompass allozyme and sequence variation absent from the known native range. Further, these populations show demographic signatures expected for large stable populations, rather than signatures of rapid population growth from small numbers of founders. The extent and spatial distribution of genetic diversity in the UK suggests that these A. kollari populations are derived from introductions of large numbers of individuals from each of two genetically divergent centres of diversity in the eastern Mediterranean. The strong spatial patterning in genetic diversity observed between different regions of northern Europe, and between sites in the UK, is compatible with leptokurtic models of population establishment.
The Marble gallwasp Andricus kollari has a native range divided into two geographically separated lifecycles. In Eastern Europe and Turkey, the lifecycle involves a sexual generation on Turkey oak, Quercus cerris, while in Iberia and North Africa the sexual generation host is cork oak, Q. suber. Over the last 500 years, A. kollari has expanded its range into northern Europe, following human planting of Q. cerris from Italy and the Balkans. We ask: (i) what is the genetic relationship between eastern and western distributions of Andricus kollari? Can we determine which lifecycle is ancestral, and how long ago they diverged? (ii) To what extent have eastern and western native ranges contributed to northwards range expansion? (iii) Is there any evidence for hybridization between the two life cycle types? We present analyses of allozyme data for 13 polymorphic loci and of sequence variation for a 433 bp fragment of the mitochondrial cytochrome b gene. These show: (i) that four haplotype lineages (one in Spain, two in Hungary/Italy and one in Turkey) diverged more or less simultaneously between 1 and 2 million years ago, suggesting the existence of at least four refuges through recent ice age cycles. Our data cannot resolve which lifecycle type is ancestral. (ii) Populations north of putative refuges are divided into two sets. Populations in south-west France are allied to Spain, while all remaining populations in northern Europe have been colonized from Italy and the Balkans. (iii) The transition from one race to another in south-west France is marked by abrupt transitions in the frequency of refuge-specific private alleles and corresponds closely to the northern limit of the distribution of cork oak. Although hybrids were detected in north-west France, none were detected where the two lifecycles meet in south-western France. The biology of oak gallwasps predicts that any hybrid zone will be narrow, and limited to regions where Q. cerris and Q. suber meet. Our data suggest that eastern and western A. kollari are effectively separate species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.