Oak galls are spectacular extended phenotypes of gallwasp genes in host oak tissues and have evolved complex morphologies that serve, in part, to exclude parasitoid natural enemies.Parasitoids and their insect herbivore hosts have coevolved to produce diverse communities comprising about a third of all animal species. The factors structuring these communities, however, remain poorly understood. An emerging theme in community ecology is the need to consider the effects of host traits, shaped by both natural selection and phylogenetic history, on associated communities of natural enemies. Here we examine the impact of host traits and phylogenetic relatedness on 48 ecologically closed and species-rich communities of parasitoids attacking gall-inducing wasps on oaks. Gallwasps induce the development of spectacular and structurally complex galls whose species- and generation-specific morphologies are the extended phenotypes of gallwasp genes. All the associated natural enemies attack their concealed hosts through gall tissues, and several structural gall traits have been shown to enhance defence against parasitoid attack. Here we explore the significance of these and other host traits in predicting variation in parasitoid community structure across gallwasp species. In particular, we test the “Enemy Hypothesis,” which predicts that galls with similar morphology will exclude similar sets of parasitoids and therefore have similar parasitoid communities. Having controlled for phylogenetic patterning in host traits and communities, we found significant correlations between parasitoid community structure and several gall structural traits (toughness, hairiness, stickiness), supporting the Enemy Hypothesis. Parasitoid community structure was also consistently predicted by components of the hosts' spatiotemporal niche, particularly host oak taxonomy and gall location (e.g., leaf versus bud versus seed). The combined explanatory power of structural and spatiotemporal traits on community structure can be high, reaching 62% in one analysis. The observed patterns derive mainly from partial niche specialisation of highly generalist parasitoids with broad host ranges (>20 hosts), rather than strict separation of enemies with narrower host ranges, and so may contribute to maintenance of the richness of generalist parasitoids in gallwasp communities. Though evolutionary escape from parasitoids might most effectively be achieved via changes in host oak taxon, extreme conservatism in this trait for gallwasps suggests that selection is more likely to have acted on gall morphology and location. Any escape from parasitoids associated with evolutionary shifts in these traits has probably only been transient, however, due to subsequent recruitment of parasitoid species already attacking other host galls with similar trait combinations.
Identification of genes involved in reproductive isolation opens novel ways to investigate links between stages of the speciation process. Are the genes coding for ecological adaptations and sexual isolation the same that eventually lead to hybrid sterility and inviability? We review the role of sex-linked genes at different stages of speciation based on four main differences between sex chromosomes and autosomes; (1) relative speed of evolution, (2) non-random accumulation of genes, (3) exposure of incompatible recessive genes in hybrids and (4) recombination rate. At early stages of population divergence ecological differences appear mainly determined by autosomal genes, but fastevolving sex-linked genes are likely to play an important role for the evolution of sexual isolation by coding for traits with sex-specific fitness effects (for example, primary and secondary sexual traits). Empirical evidence supports this expectation but mainly in female-heterogametic taxa. By contrast, there is clear evidence for both strong X-and Z-linkage of hybrid sterility and inviability at later stages of speciation. Hence genes coding for sexual isolation traits are more likely to eventually cause hybrid sterility when they are sex-linked. We conclude that the link between sexual isolation and evolution of hybrid sterility is more intuitive in male-heterogametic taxa because recessive sexually antagonistic genes are expected to quickly accumulate on the X-chromosome. However, the broader range of sexual traits that are expected to accumulate on the Z-chromosome may facilitate adaptive speciation in female-heterogametic species by allowing male signals and female preferences to remain in linkage disequilibrium despite periods of gene flow.
Studies of reproductive isolation between homoploid hybrid species and their parent species have rarely been carried out. Here we investigate reproductive barriers between a recently recognized hybrid bird species, the Italian sparrow Passer italiae and its parent species, the house sparrow P. domesticus and Spanish sparrow P. hispaniolensis. Reproductive barriers can be difficult to study in hybrid species due to lack of geographical contact between taxa. However, the Italian sparrow lives parapatrically with the house sparrow and both sympatrically and parapatrically with the Spanish sparrow. Through whole-transcriptome sequencing of six individuals of each of the two parent species we identified a set of putatively parent species-diagnostic single nucleotide polymorphism (SNP) markers. After filtering for coverage, genotyping success (>97%) and multiple SNPs per gene, we retained 86 species-informative, genic, nuclear and mitochondrial SNP markers from 84 genes for analysis of 612 male individuals. We show that a disproportionately large number of sex-linked genes, as well as the mitochondria and nuclear genes with mitochondrial function, exhibit sharp clines at the boundaries between the hybrid and the parent species, suggesting a role for mito-nuclear and sex-linked incompatibilities in forming reproductive barriers. We suggest that genomic conflict via interactions between mitochondria and sex-linked genes with mitochondrial function (“mother's curse”) at one boundary and centromeric drive at the other may best explain our findings. Hybrid speciation in the Italian sparrow may therefore be influenced by mechanisms similar to those involved in non-hybrid speciation, but with the formation of two geographically separated species boundaries instead of one. Spanish sparrow alleles at some loci have spread north to form reproductive barriers with house sparrows, while house sparrow alleles at different loci, including some on the same chromosome, have spread in the opposite direction to form barriers against Spanish sparrows.
Hosts belonging to the same species suffer dramatically different impacts from their natural enemies. This has been explained by host neighbourhood, that is, by surrounding host-species diversity or spatial separation between hosts. However, even spatially neighbouring hosts may be separated by many million years of evolutionary history, potentially reducing the establishment of natural enemies and their impact. We tested whether phylogenetic isolation of oak hosts from neighbouring trees within a forest canopy reduces phytophagy. We found that an increase in phylogenetic isolation by 100 million years corresponded to a 10-fold decline in phytophagy. This was not due to poorer living conditions for phytophages on phylogenetically isolated oaks. Neither species diversity of neighbouring trees nor spatial distance to the closest oak affected phytophagy. We suggest that reduced pressure by natural enemies is a major advantage for individuals within a host species that leave their ancestral niche and grow among distantly related species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.