The role of mitochondria in cell metabolism and survival is controlled by calcium signals that are commonly transmitted at the close associations between mitochondria and endoplasmic reticulum (ER). However, the physical linkage of the ER–mitochondria interface and its relevance for cell function remains elusive. We show by electron tomography that ER and mitochondria are adjoined by tethers that are ∼10 nm at the smooth ER and ∼25 nm at the rough ER. Limited proteolysis separates ER from mitochondria, whereas expression of a short “synthetic linker” (<5 nm) leads to tightening of the associations. Although normal connections are necessary and sufficient for proper propagation of ER-derived calcium signals to the mitochondria, tightened connections, synthetic or naturally observed under apoptosis-inducing conditions, make mitochondria prone to Ca2+ overloading and ensuing permeability transition. These results reveal an unexpected dependence of cell function and survival on the maintenance of proper spacing between the ER and mitochondria.
Summary
Mitochondrial Ca2+ uptake via the uniporter is central to cell metabolism, signaling and survival. Recent studies identified MCU as the uniporter’s likely pore and MICU1, an EF-hand protein, as its critical regulator. How this complex decodes dynamic cytoplasmic [Ca2+] ([Ca2+]c) signals, to tune out small [Ca2+]c increases yet permit pulse transmission, remains unknown. We report that loss of MICU1 in mouse liver and cultured cells causes mitochondrial Ca2+ accumulation during small [Ca2+]c elevations, yet an attenuated response to agonist-induced [Ca2+]c pulses. The latter reflects loss of positive cooperativity, likely via the EF-hands. MICU1 faces the intermembrane space and responds to [Ca2+]c changes. Prolonged MICU1 loss leads to an adaptive increase in matrix Ca2+ binding, yet cells show impaired oxidative metabolism and sensitization to Ca2+ overload. Collectively, the data indicate that MICU1 senses the [Ca2+]c to establish the uniporter’s threshold and gain, thereby allowing mitochondria to properly decode different inputs.
The ER-mitochondrial junction provides a local calcium signaling domain that is critical for both matching energy production with demand and the control of apoptosis. Here, we visualize ER-mitochondrial contact sites and monitor the localized [Ca2+] changes ([Ca2+]ER-mt) using drug-inducible fluorescent interorganelle linkers. We show that all mitochondria have contacts with the ER but plasma membrane-mitochondrial contacts are less frequent because of interleaving ER stacks in both RBL-2H3 and H9c2 cells. Single mitochondria display discrete patches of ER contacts and show heterogeneity in the ER-mitochondrial Ca2+ transfer. Pericam-tagged linkers revealed IP3-induced [Ca2+]ER-mt signals that exceeded 9μM and endured buffering bulk cytoplasmic [Ca2+] increases. Altering linker length to modify the space available for the Ca2+ transfer machinery had a biphasic effect on [Ca2+]ER-mt signals. These studies provide direct evidence for the existence of high Ca2+ microdomains between the ER and mitochondria, and suggest an optimal gap width for efficient Ca2+ transfer.
Ca2+ flux across the mitochondrial inner membrane regulates bioenergetics, cytoplasmic Ca2+ signals and activation of cell death pathways1–11. Mitochondrial Ca2+ uptake occurs at regions of close apposition with intracellular Ca2+ release sites 12–14, driven by the inner membrane voltage generated by oxidative phosphorylation and mediated by a Ca2+ selective ion channel (MiCa15) called the uniporter16–18 whose complete molecular identity remains unknown. Mitochondrial calcium uniporter (MCU) was recently identified as the likely ion-conducting pore19, 20. In addition, MICU1 was identified as a mitochondrial regulator of uniporter-mediated Ca2+ uptake in HeLa cells 21. Here we identified CCDC90A, hereafter referred to as MCUR1 (Mitochondrial Calcium Uniporter Regulator 1), an integral membrane protein required for MCU-dependent mitochondrial Ca2+ uptake. MCUR1 binds to MCU and regulates ruthenium red-sensitive MCU-dependent Ca2+ uptake. MCUR1 knockdown does not alter MCU localization, but abrogates Ca2+ uptake by energized mitochondria in intact and permeabilized cells. Ablation of MCUR1 disrupts oxidative phosphorylation, lowers cellular ATP, and activates AMP kinase-dependent pro-survival autophagy. Thus, MCUR1 is a critical component of a mitochondrial uniporter channel complex required for mitochondrial Ca2+ uptake and maintenance of normal cellular bioenergetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.