The continuously increasing cost of the US healthcare system has received significant attention. Central to the ideas aimed at curbing this trend is the use of technology in the form of the mandate to implement electronic health records (EHRs). EHRs consist of patient information such as demographics, medications, laboratory test results, diagnosis codes, and procedures. Mining EHRs could lead to improvement in patient health management as EHRs contain detailed information related to disease prognosis for large patient populations. In this article, we provide a structured and comprehensive overview of data mining techniques for modeling EHRs. We first provide a detailed understanding of the major application areas to which EHR mining has been applied and then discuss the nature of EHR data and its accompanying challenges. Next, we describe major approaches used for EHR mining, the metrics associated with EHRs, and the various study designs. With this foundation, we then provide a systematic and methodological organization of existing data mining techniques used to model EHRs and discuss ideas for future research.
The guideline recommendations showed that shorter delays indicates better outcomes. There was no evidence that 3 hours is safe; even very short delays adversely impact outcomes. Findings demonstrated a new approach to incorporate time t when analyzing the impact on outcomes and provide new evidence for clinical practice and research.
MicroRNAs play a role in regulating diverse biological processes and have considerable utility as molecular markers for diagnosis and monitoring of human disease. Several technologies are available commercially for measuring microRNA expression. However, cross-platform comparisons do not necessarily correlate well, making it difficult to determine which platform most closely represents the true microRNA expression level in a tissue. To address this issue, we have analyzed RNA derived from cell lines, as well as fresh frozen and formalin-fixed paraffin embedded tissues, using Affymetrix, Agilent, and Illumina microRNA arrays, NanoString counting, and Illumina Next Generation Sequencing. We compared the performance within- and between the different platforms, and then verified these results with those of quantitative PCR data. Our results demonstrate that the within-platform reproducibility for each method is consistently high and although the gene expression profiles from each platform show unique traits, comparison of genes that were commonly detectable showed that detection of microRNA transcripts was similar across multiple platforms.
The common neurodegenerative pathologies underlying dementia are Alzheimer’s disease (AD), Lewy body disease (LBD) and Frontotemporal lobar degeneration (FTLD). Our aim was to identify patterns of atrophy unique to each of these diseases using antemortem structural-MRI scans of pathologically-confirmed dementia cases and build an MRI-based differential diagnosis system. Our approach of creating atrophy maps using structural-MRI and applying them for classification of new incoming patients is labeled Differential-STAND (Differential-diagnosis based on STructural Abnormality in NeuroDegeneration). Pathologically-confirmed subjects with a single dementing pathologic diagnosis who had an MRI at the time of clinical diagnosis of dementia were identified: 48 AD, 20 LBD, 47 FTLD-TDP (pathology-confirmed FTLD with TDP-43). Gray matter density in 91 regions-of-interest was measured in each subject and adjusted for head-size and age using a database of 120 cognitively normal elderly. The atrophy patterns in each dementia type when compared to pathologically-confirmed controls mirrored known disease-specific anatomic patterns: AD-temporoparietal association cortices and medial temporal lobe; FTLD-TDP-frontal and temporal lobes and LBD-bilateral amygdalae, dorsal midbrain and inferior temporal lobes. Differential-STAND based classification of each case was done based on a mixture model generated using bisecting k-means clustering of the information from the MRI scans. Leave-one-out classification showed reasonable performance compared to the autopsy gold-standard and clinical diagnosis: AD (sensitivity:90.7%; specificity:84 %), LBD (sensitivity:78.6%; specificity:98.8%) and FTLD-TDP (sensitivity:84.4%; specificity:93.8%). The proposed approach establishes a direct a priori relationship between specific topographic patterns on MRI and “gold standard” of pathology which can then be used to predict underlying dementia pathology in new incoming patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.