Tyrosine kinase inhibitors (TKIs) are promising new agents for specific inhibition of malignant cell growth and metastasis formation. Because most of the TKIs have to reach an intracellular target, specific membrane transporters may significantly modulate their effectiveness. In addition, the hydrophobic TKIs may interact with so-called multidrug transporters and thus alter the cellular distribution of unrelated pharmacological agents. In the present work, we show that certain TKIs, already in the clinical phase of drug development, directly interact with the ABCG2 multidrug transporter protein with a high affinity. We found that in several in vitro assay systems, STI-571 (Gleevec; imatinib mesylate), ZD1839 (Iressa; gefitinib), and N-[4-[(3-bromophenyl)amino]-6-quinazolinyl]-2-butynamide (EKI-785) interacted with ABCG2 at submicromolar concentrations, whereas other multidrug transporters, human multidrug resistance protein (P-glycoprotein, ABCB1) and human multidrug resistance protein 1 (ABCC1), showed much lower reactivity toward these agents. Low concentrations of the TKIs examined selectively modulated ABCG2-ATPase activity, inhibited ABCG2-dependent active drug extrusion, and significantly affected drug resistance patterns in cells expressing ABCG2. Our results indicate that multidrug resistance protein modulation by TKIs may be an important factor in the clinical treatment of cancer patients. These data also raise the possibility that an extrusion of TKIs by multidrug transporters, e.g., ABCG2, may be involved in tumor cell TKI resistance.
Iressa (ZD1839, Gefitinib), used in clinics to treat non-small cell lung cancer patients, is a tyrosine kinase receptor inhibitor that leads to specific decoupling of epidermal growth factor receptor (EGFR) signaling. Recent data indicate that Iressa is especially effective in tumors with certain EGFR mutations; however, a subset of these tumors does not respond to Iressa. In addition, certain populations have an elevated risk of side effects during Iressa treatment. The human ABCG2 (BCRP/MXR/ABCP) transporter causes cancer drug resistance by actively extruding a variety of cytotoxic drugs, and it functions physiologically to protect our tissues from xenobiotics. Importantly, ABCG2 modifies absorption, distribution, and toxicity of several pharmacologic agents. Previously, we showed that ABCG2 displays a high-affinity interaction with several tyrosine kinase receptor inhibitors, including Iressa. Here, we show that the expression of ABCG2, but not its nonfunctional mutant, protects the EGFR signalingdependent A431 tumor cells from death on exposure to Iressa. This protection is reversed by the ABCG2-specific inhibitor, Ko143. These data, reinforced with cell biology and biochemical experiments, strongly suggest that ABCG2 can actively pump Iressa. Therefore, variable expression and polymorphisms of ABCG2 may significantly modify the antitumor effect as well as the absorption and tissue distribution of Iressa. (Cancer Res 2005; 65(5): 1770-7)
Expression of multidrug resistance ABC transporters has been suggested as a functional marker and chemoprotective element in early human progenitor cell types. In this study we examined the expression and function of the key multidrug-ABC transporters, ABCB1, ABCC1 and ABCG2 in two human embryonic stem (HuES) cell lines. We detected a high level ABCG2 expression in the undifferentiated HuES cells, while the expression of this protein significantly decreased during early cell differentiation. ABCG2 in HuES cells provided protection against mitoxantrone toxicity, with a drug-stimulated overexpression of the transporter. No significant expression of ABCB1/ABCC1 was found either in the undifferentiated or partially differentiated HuES cells. Examination of the ABCG2 mRNA in HuES cells indicated the use of selected promoter sites and a truncated 3' untranslated region, suggesting a functionally distinct regulation of this transporter in undifferentiated stem cells. The selective expression of the ABCG2 multidrug transporter indicates that ABCG2 can be applied as a marker for undifferentiated HuES cells. Moreover, protection of embryonic stem cells against xenobiotics and endobiotics may depend on ABCG2 expression and regulation.
The human ABCG2 protein is an important primary active transporter for hydrophobic compounds in several cell types, and its overexpression causes multidrug resistance in tumors. A monoclonal antibody (5D3) recognizes this protein on the cell surface. In ABCG2-expressing cells 5D3 antibody showed a saturable labeling and inhibited ABCG2 transport and ATPase function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.