In this paper, a miniaturization method is proposed for developing micro distributed generation for a micro smart grid simulator. The micro smart grid simulator is a fault simulator that was built to test and verify the new operation control algorithms for smart grids in the laboratory and has a size downscaled to one-thousandth of that of an actual smart grid. The micro distributed generation was designed in a multi-layered structure (dimension: 13 × 20 cm2), in which each function is implemented in several layers, to satisfy the size requirements. Next, the grid synchronization and PQ control algorithms required for the distributed generation were developed. A three-phase 19 V power system was built, and a 19 V–7.5 W three-phase micro distributed generation was realized through experimental verification. In addition, by verifying the effectiveness through grid synchronization and 7.5 W PQ control experiments, it was confirmed that the micro distributed generation based on the proposed miniaturization method can be implemented in a micro smart grid simulator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.