We study a zero range process on scale-free networks in order to investigate how network structure influences particle dynamics. The zero range process is defined with the rate p(n) = n(delta) at which particles hop out of nodes with n particles. We show analytically that a complete condensation occurs when delta < or = delta(c) triple bond 1/(gamma-1) where gamma is the degree distribution exponent of the underlying networks. In the complete condensation, those nodes whose degree is higher than a threshold are occupied by macroscopic numbers of particles, while the other nodes are occupied by negligible numbers of particles. We also show numerically that the relaxation time follows a power-law scaling tau approximately L(z) with the network size L and a dynamic exponent z in the condensed phase.
Using a probabilistic approach we study the parallel dynamics of fully connected Q-Ising neural networks for arbitrary Q. A Lyapunov function is shown to exist at zero temperature. A recursive scheme is set up to determine the time evolution of the order parameters through the evolution of the distribution of the local field. As an illustrative example, an explicit analysis is carried out for the first three time steps. For the case of the Q = 3 model these theoretical results are compared with extensive numerical simulations. Finally, equilibrium fixed-point equations are derived and compared with the thermodynamic approach based upon the replica-symmetric mean-field approximation.
We present an analytic study of the three-urn model for separation of sand. We solve analytically the master equation and the first-passage problem. We find that the stationary probability distribution obeys the detailed balance and is governed by the free energy. We find that the characteristic lifetime of a cluster diverges algebraically with exponent 1/3 at the limit of stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.