Recently, it was shown that lesional skin of atopic dermatitis patients expresses low levels of some antimicrobial peptides, compared with psoriasis patients. Here we performed microarray analysis on mRNA from purified lesional epidermal cells of patients with chronic plaque psoriasis and chronic atopic dermatitis, to investigate whether this is a general phenomenon for host defense proteins, and how specific it is for this class of molecules. Microarray data were confirmed on a selected set of genes by quantitative PCR and at the protein level by immunohistochemistry. We found overexpression of many antimicrobial proteins in keratinocytes from psoriatic skin compared with atopic dermatitis skin. Interestingly, we observed that markers of normal differentiation and the activated/hyperproliferative epidermal phenotype were expressed at equal levels. Chronic lesions of psoriasis and atopic dermatitis patients are remarkably similar with respect to cellular proliferation. We conclude that psoriatic epidermis expresses high levels of host defense proteins compared with atopic dermatitis epidermis, and this phenomenon appears to be specific for these proteins. It remains to be investigated whether this is caused by genetic polymorphisms in pathways leading to an epidermal antimicrobial response, or by differences in the cellular infiltrate in psoriasis compared with atopic dermatitis.
BackgroundPrevious studies have extensively documented antimicrobial and chemotactic activities of beta-defensins. Human beta-defensin-2 (hBD-2) is strongly expressed in lesional psoriatic epidermis, and recently we have shown that high beta-defensin genomic copy number is associated with psoriasis susceptibility. It is not known, however, if biologically and pathophysiologically relevant concentrations of hBD-2 protein are present in vivo, which could support an antimicrobial and proinflammatory role of beta-defensins in lesional psoriatic epidermis.Methodology/Principal FindingsWe found that systemic levels of hBD-2 showed a weak but significant correlation with beta defensin copy number in healthy controls but not in psoriasis patients with active disease. In psoriasis patients but not in atopic dermatitis patients, we found high systemic hBD-2 levels that strongly correlated with disease activity as assessed by the PASI score. Our findings suggest that systemic levels in psoriasis are largely determined by secretion from involved skin and not by genomic copy number. Modelling of the in vivo epidermal hBD-2 concentration based on the secretion rate in a reconstructed skin model for psoriatic epidermis provides evidence that epidermal hBD-2 levels in vivo are probably well above the concentrations required for in vitro antimicrobial and chemokine-like effects.Conclusions/SignificanceSerum hBD-2 appears to be a useful surrogate marker for disease activity in psoriasis. The discrepancy between hBD-2 levels in psoriasis and atopic dermatitis could explain the well known differences in infection rate between these two diseases.
Cystatin M/E is a high affinity inhibitor of the asparaginyl endopeptidase legumain, and we have previously reported that both proteins are likely to be involved in the regulation of stratum corneum formation in skin. Although cystatin M/E contains a predicted binding site for papain-like cysteine proteases, no high affinity binding for any member of this family has been demonstrated so far. We report that human cathepsin V (CTSV) and human cathepsin L (CTSL) are strongly inhibited by human cystatin M/E. Kinetic studies show that K i values of cystatin M/E for the interaction with CTSV and CTSL are 0.47 and 1.78 nM, respectively. On the basis of the analogous sites in cystatin C, we used site-directed mutagenesis to identify the binding sites of these proteases in cystatin M/E. We found that the W135A mutant was rendered inactive against CTSV and CTSL but retained legumain-inhibiting activity. Conversely, the N64A mutant lost legumain-inhibiting activity but remained active against the papain-like cysteine proteases. We conclude that legumain and papain-like cysteine proteases are inhibited by two distinct non-overlapping sites. Using immunohistochemistry on normal human skin, we found that cystatin M/E co-localizes with CTSV and CTSL. In addition, we show that CTSL is the elusive enzyme that processes and activates epidermal transglutaminase 3. The identification of CTSV and CTSL as novel targets for cystatin M/E, their (co)-expression in the stratum granulosum of human skin, and the activity of CTSL toward transglutaminase 3 strongly imply an important role for these enzymes in the differentiation process of human epidermis.The cellular activity of a protease is the result of many regulatory mechanisms such as the concentration and compartmentalization of substrates, the enzyme itself, and its cognate inhibitors. Cystatins are the natural and specific inhibitors of endogenous mammalian lysosomal cysteine proteases and have shown important regulatory and protective functions in cells and tissues against proteolysis by cysteine proteases of host, bacterial, and viral origin (1-3). The inhibitory activity of cystatins is regulated by a reversible, tight-binding interaction between the protease inhibitor and its target protease (4). Disturbance of the normal balance between cysteine proteases and their inhibitors at a wrong time and location can lead to several pathological conditions such as chronic inflammatory reactions (5), tumor malignancy (6), and faulty differentiation processes in the epidermis and hair follicle (7). Little is known on the specific biological functions of cystatin family members. However, mutations in the genes encoding the cystatin family members cystatin B and C cause neurological phenotypes in humans (8, 9).Cystatin M/E is a 14-kDa secreted protein that shares only 35% homology with other human type 2 cystatins. Nevertheless, it has a similar overall structure including the two characteristic intrachain disulfide bridges (10, 11). Expression of cystatin M/E is found to be restricted to ...
The vanin gene family encodes secreted and membrane-bound ectoenzymes that convert pantetheine into pantothenic acid and cysteamine. Recent studies in a mouse colitis model indicated that vanin-1 has proinflammatory activity and suggest that pantetheinases are potential therapeutic targets in inflammatory diseases. In a microarray analysis of epidermal gene expression of psoriasis and atopic dermatitis lesions, we identified vanin-3 as the gene showing the highest differential expression of all annotated genes that we studied (19-fold upregulation in psoriasis). Quantitative real-time PCR analysis confirmed the microarray data on vanin-3 and showed similar induction of vanin-1, but not of vanin-2, in psoriatic epidermis. Immunohistochemistry showed that vanin-3 is expressed in the differentiated epidermal layers. Using submerged and organotypic keratinocyte cultures, we found that vanin-1 and vanin-3 are induced at the mRNA and protein level by psoriasis-associated proinflammatory cytokines (Th17/Th1) but not by Th2 cytokines. We hypothesize that increased levels of pantetheinase activity are part of the inflammatory-regenerative epidermal differentiation program, and may contribute to the phenotype observed in psoriasis.
In the past decades, chronic inflammatory diseases such as psoriasis, atopic dermatitis, asthma, Crohn’s disease and celiac disease were generally regarded as immune-mediated conditions involving activated T-cells and proinflammatory cytokines produced by these cells. This paradigm has recently been challenged by the finding that mutations and polymorphisms in epithelium-expressed genes involved in physical barrier function or innate immunity, are risk factors of these conditions. We used a functional genomics approach to analyze cultured keratinocytes from patients with psoriasis or atopic dermatitis and healthy controls. First passage primary cells derived from non-lesional skin were stimulated with pro-inflammatory cytokines, and expression of a panel of 55 genes associated with epidermal differentiation and cutaneous inflammation was measured by quantitative PCR. A subset of these genes was analyzed at the protein level. Using cluster analysis and multivariate analysis of variance we identified groups of genes that were differentially expressed, and could, depending on the stimulus, provide a disease-specific gene expression signature. We found particularly large differences in expression levels of innate immunity genes between keratinocytes from psoriasis patients and atopic dermatitis patients. Our findings indicate that cell-autonomous differences exist between cultured keratinocytes of psoriasis and atopic dermatitis patients, which we interpret to be genetically determined. We hypothesize that polymorphisms of innate immunity genes both with signaling and effector functions are coadapted, each with balancing advantages and disadvantages. In the case of psoriasis, high expression levels of antimicrobial proteins genes putatively confer increased protection against microbial infection, but the biological cost could be a beneficial system gone awry, leading to overt inflammatory disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.