OBJECTIVES We aimed to simulate blood flow at an aortic dissection in an in vitro vascular model and assess the impact of the cannulation method on visceral perfusion. METHODS An aortic-dissection model with an acrylic aortic wall and silicone intimal flap was developed to study visceral perfusion under various cannulation conditions. The primary tear was placed in the proximal descending aorta and the re-entry site in the left common iliac artery. A cardiovascular pump was used to reproduce a normal pulsatile aortic flow and a steady cannulation flow. Axillary and axillary plus femoral cannulation were compared at flow rates of 3–7 l/min. Haemodynamics were analysed by using four-dimensional flow magnetic resonance imaging. RESULTS Axillary cannulation (AC) was found to collapse the true lumen at the coeliac and superior mesentery arteries, while combined axillary and femoral cannulation did not change the size of the true lumen. Combined axillary and femoral cannulation resulted in a larger visceral flow than did AC alone. When axillary plus femoral cannulation was used, the visceral flow increased by 125% at 3 l/min, by 89% at 4 l/min, by 67% at 5 L/min, by 98% at 6 l/min and by 101% at 7 l/min, respectively, compared to those with the AC only. CONCLUSIONS Our model was useful to understanding the haemodynamics in aortic dissection. In this specific condition, we confirmed that the intimal flap motion can partially block blood flow to the coeliac and superior mesenteric arteries and that additional femoral cannulation can increase visceral perfusion.
The single mode square lattice photonic-crystal vertical-cavity surface-emitting lasers (PC-VCSELs) are proposed and demonstrated. Square-lattice photonic-crystal patterns of various lattice constants are introduced on top mirrors of VCSELs having two different current apertures. The maximum single mode output power of about 1 mW is obtained from the device with lattice constant of 5.0 m and current aperture of 16 m. The PC-VCSEL operates in a single transverse mode in an entire operating current range with a side-mode suppression ratio of over 20 dB. The asymmetric introduction of smaller air holes improves the polarization selectivity.
Introduction: The aim of this study was to characterize the hemodynamics of Fontan patients using both four-dimensional flow magnetic resonance imaging (4D Flow MRI) and computational fluid dynamics (CFD).Methods: Twenty-nine patients (3.5 ± 0.5 years) who had undergone the Fontan procedure were enrolled, and the superior vena cava (SVC), left pulmonary artery (LPA), right pulmonary artery (RPA), and conduit were segmented based on 4D Flow MRI images. Velocity fields from 4D Flow MRI were used as boundary conditions for CFD simulations. Hemodynamic parameters such as peak velocity (Vmax), pulmonary flow distribution (PFD), kinetic energy (KE), and viscous dissipation (VD) were estimated and compared between the two modalities.Results and discussion: The Vmax, KE, VD, PFDTotal to LPA, and PFDTotal to RPA of the Fontan circulation were 0.61 ± 0.18 m/s, 0.15 ± 0.04 mJ, 0.14 ± 0.04 mW, 41.3 ± 15.7%, and 58.7 ± 15.7% from 4D Flow MRI; and 0.42 ± 0.20 m/s, 0.12 ± 0.05 mJ, 0.59 ± 0.30 mW, 40.2 ± 16.4%, and 59.8 ± 16.4% from CFD, respectively. The overall velocity field, KE, and PFD from the SVC were in agreement between modalities. However, PFD from the conduit and VD showed a large discrepancy between 4D Flow MRI and CFD, most likely due to spatial resolution and data noise. This study highlights the necessity for careful consideration when analyzing hemodynamic data from different modalities in Fontan patients.
Hemodynamics in aortic dissection (AD) is closely associated with the risk of aortic aneurysm, rupture, and malperfusion. Altered blood flow in patients with AD can lead to severe complications such as visceral malperfusion. In this study, we aimed to investigate the effect of cannulation flow on hemodynamics in AD using a fluid–structure interaction simulation. We developed a specific-idealized AD model that included an intimal tear in the descending thoracic aorta, a re-entry tear in the left iliac artery, and nine branches. Two different cannulation methods were tested: (1) axillary cannulation (AC) only through the brachiocephalic trunk and (2) combined axillary and femoral cannulation (AFC) through the brachiocephalic trunk and the right common iliac artery. AC was found to result in the development of a pressure difference between the true lumen and false lumen, owing to the difference in the flow rate through each lumen. This pressure difference collapsed the true lumen, disturbing blood flow to the celiac and superior mesenteric arteries. However, in AFC, the pressure levels between the two lumens were similar, and no collapse occurred. Moreover, the visceral flow was higher than that in AC. Lastly, the stiffness of the intimal flap affected the true lumen's collapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.