This paper suggests a numerical method for valuation of American options under the Kou model (double exponential jump diffusion model). The method is based on approximation of underlying asset price using a finite-state, time-homogeneous Markov chain. We examine the effectiveness of the proposed method with simulation results, which are compared with those from the conventional numerical method, the finite difference method for PIDE (partial integro-differential equation).
A lot of researches have been conducted to estimate the volatility smile effect shown in the option market. This paper proposes a method to approximate an implied volatility function, given noisy real market option data. To construct an implied volatility function, we use Gaussian Processes (GPs). Their output values are implied volatilities while moneyness values (the ratios of strike price to underlying asset price) and time to maturities are as their input values. To show the performances of our proposed method, we conduct experimental simulations with Korean Equity-Linked Warrant (ELW) market data as well as toy data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.