We developed a customized doubly Q-switched laser that can control the pulse width to easily find weak acoustic signals for photoacoustic (PA) systems. As the laser was constructed using an acousto-optic Q-switcher, in contrast to the existing commercial laser system, it is easier to control the pulse repetition rate and pulse width. The laser has the following control ranges: 10 Hz–10 kHz for the pulse repetition rate, 40–150 ns for the pulse width, and 50–500 μJ for the pulse energy. Additionally, a custom-made modularized sample stage was used to develop a fully customized PA system. The modularized sample stage has a nine-axis control unit design for the PA system, allowing the sample target and transducer to be freely adjusted. This makes the system suitable for capturing weak PA signals. Images were acquired and processed for widely used sample targets (hair and insulating tape) with the developed fully customized PA system. The customized doubly Q-switched laser-based PA imaging system presented in this paper can be modified for diverse conditions, including the wavelength, frequency, pulse width, and sample target; therefore, we expect that the proposed technique will be helpful in conducting fundamental and applied research for PA imaging system applications.
We experimentally investigate phase synchronization between two electronically coupled diode laser pumped Nd:YAG lasers. As the coupling strength increases, the phase of the two chaotic laser outputs develops from a nonsynchronous state to a phase synchronous one through a phase jump state. We find that there are 2pi phase jumps and a pi/2 phase shift between the two laser outputs unlike in optically coupled Nd:YAG lasers. To clarify the transition to phase synchronization with a pi/2 phase shift, we analyze the phenomenon of phase synchronization by using a phase portrait, phase difference dynamics, and frequency variation depending on the coupling strength and obtain the scaling rule of the average phase locking time in the intermittent phase jump state.
Using mutually coupled nonidentical continuous-wave Nd:YAG lasers, we experimentally confirmed the recently proposed transition route from phase synchronization to complete synchronization. As evidence of this transition we obtained the probability distribution of the intermittent synchronization time near the threshold of the complete synchronization transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.