Characterizing the influencing factors of resuspended dust on paved roads according to the atmospheric environment and traffic conditions is important to provide a basis for road atmospheric pollution control measures suitable for various road environments in the future. This study attempts to identify factors in the concentration of resuspended dust according to the level of road dust loading and PM10 emission characteristics according to atmospheric weather environment and traffic conditions using real-time vehicle-based resuspended PM10 concentration measuring equipment. This study mainly focuses on the following main topics: (1) the increased level of resuspended dust according to vehicle speed and silt loading (sL) level; (2) difference between atmospheric pollution at adjacent monitoring station concentration and background concentration levels on roads due to atmospheric weather changes; (3) the correlation between traffic and weather factors with resuspended dust levels; (4) the evaluation of resuspended dust levels by road section. Based on the results, the necessity of research to more appropriately set the focus of analysis in order to characterize the resuspended dust according to changes in the traffic and weather environment in urban areas is presented.
As the amount of aged pavement increases, functional damage, such as spalling, occurs frequently on Portland Cement Concrete pavement (PCC) in South Korea. However, the existing management method does not properly reflect the scope of deterioration of the pavement causing early damage. To overcome the problem of the existing repair method, this study evaluated the deterioration of functional damage on the surface of the slab as soundness through ultrasonic velocity measurement method among non-destructive testing (NDT) techniques and suggested a method to estimate the depth of deterioration. To develop a method for estimating the depth of the deterioration a slab, a preliminary investigation was conducted to check the range of ultrasonic velocity of concrete pavement in South Korea and to evaluate the variability of NDT equipment. Based on the ultrasonic velocity, the sound rating of concrete pavement was graded from 5 for “very good” to 0 for “very poor”, and the tendency of the ultrasonic velocity to increase according to the depth of the deteriorated areas was confirmed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.