The concept of a large intelligent surface (LIS) has recently emerged as a promising wireless communication paradigm that can exploit the entire surface of man-made structures for transmitting and receiving information. An LIS is expected to go beyond massive multiple-input multiple-output (MIMO) system, insofar as the desired channel can be modeled as a perfect line-of-sight. To understand the fundamental performance benefits, it is imperative to analyze its achievable data rate, under practical LIS environments and limitations. In this paper, an asymptotic analysis of the uplink data rate in an LIS-based large antenna-array system is presented. In particular, the asymptotic LIS rate is derived in a practical wireless environment where the estimated channel on LIS is subject to estimation errors and interference channels are spatially correlated Rician fading channels. Moreover, the occurrence of the channel hardening effect is analyzed and the performance bound is asymptotically derived for the considered LIS system. The analytical asymptotic results are then shown to be in close agreement with the exact mutual information as the numbers of antennas and devices increases without bounds.Moreover, the derived ergodic rates show that noise and interference from estimation errors and the A preliminary version of this work was submitted to IEEE SPAWC 2019 [1].
Large intelligent surfaces (LISs) have been recently proposed as an effective wireless communication solution that can leverage antenna arrays deployed on the entirety of man-made structures such as walls.An LIS can provide space-intensive and reliable communication, enabling the desired wireless channel to exhibit a perfect line-of-sight. However, the outage probability of LIS, which is an important performance metric to evaluate the system reliability, remains uncharacterized. In this paper, the distribution of uplink sum-rate is asymptotically analyzed for an LIS system. Given the derived asymptotic distribution, the outage probability is derived for the considered LIS system. Simulation results show that the results of the proposed asymptotic analyses are in close agreement to the exact mutual information in the presence of a large number of antennas and devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.