Abstract:The paper demonstrates the utilization of a tunable band-pass filter in producing tunable multi-wavelength Brillouinerbium fiber lasers within a Fabry-Perot cavity. The optimization of the Brillouin pump wavelength position within the bandwidth of the self-lasing cavity modes is important to achieve the maximum stable output channels. The same number of 14 output channels with constant channel spacing of 10.5 GHz were able to be generated within 32 nm range. Besides the tunability, this design also has the advantage of consistent power requirement of both the 980 nm laser diode and the Brillouin pump in generating the 14 channels through the broad tuning range.Amplitude, dBm
The thermoluminescence (TL) provided by flat optical fibers (FF) have been proposed as the basis for a novel radiation sensor, for use in medical dosimetry for both diagnostic and radiotherapy applications. A flat optical fiber with nominal dimensions of (3.226 x 3.417 x 0.980) mm 3 and made of pure silica SiO 2 was selected for this research. The FF was annealed at 400 o C for 1 h before being irradiated. Using a linear accelerator (LINAC), delivering doses in the range 2.0-10.0 Gy, the kinetic parameters and dosimetric glow curve representing TL response of the FF were studied with respect to electron irradiation of 6 MeV, 15 MeV and 21 MeV. The TL response was read out using a TLD reader Harshaw Model 3500. The Time-Temperature-Profile (TTP) of the reader used includes; initial preheat temperature of 80 o C, maximum readout temperature of 400 o C and a heating rate of 30 o Cs -1 . The proposed FF shows excellent linear radiation response behavior within the clinical relevant dose range for all of these energies, good reproducibility, independence of radiation energy, independence of dose rate and exhibits a very low thermal fading. From these results, the proposed FF can be used as radiation dosimeter and favorably compares with the widely used LiF:MgTi dosimeter, for application in medical radiotherapy application.
This letter presents the effect of intracavity loss control on the tuning range of erbium-doped fiber laser (EDFL). The intracavity loss is controlled using a variable attenuator fitted inside the laser's cavity. The tuning range of uncontrolled cavity loss is around 3 nm, while the controlled cavity loss tuning range is 30 nm.
A simple fiber optic displacement sensor is presented using a multimode plastic bundled fiber and the intensity modulation technique. The performance of the sensor is compared for different types of probes and targets. The probe with the largest receiving core diameter demonstrates the highest linearity range, and increasing the number of receiving cores increases the sensitivity of the sensor. With a stainless steel target and the concentric bundled fiber with 16 receiving fibers as a probe, the sensitivity of the sensor is found to be 0.0220 mV/μm over 150 to 550 μm range and – 0.0061 mV/μm over 1100 to 2000 μm range. The target with a higher reflectivity shows a higher sensitivity. The linearity range for the front slope is almost similar for all targets tested. However, for the back slope, lower reflectivity objects have a relatively higher linearity range with the highest range of 1600 μm being obtained using plastic and aluminum targets. The simplicity of the design, high degree of sensitivity, dynamic range, non-contact measurement and low cost of the fabrication make it suitable for applications in industries for position control and micro displacement measurement in the hazardous regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.