The two-plasmon-decay (TPD) instability in direct-drive irradiation OMEGA [J. M. Soures, R. L. McCrory, C. P. Verdon, et al., Phys. Plasmas 3, 2108 (1996)] experiments is seen in the half-integer harmonic emission. Experimental time-resolved ω/2 and 3ω/2 spectra indicate that the linear theory for the absolute TPD instability reasonably predicts TPD thresholds. The plasma wave spectra do not, however, agree at all with the predictions of the linear theory. This is most likely a consequence of the nonlinear evolution of this instability once it is above threshold. This is demonstrated with spectral data obtained from spherical implosion experiments as well as planar target experiments. In the latter, Thomson scattering shows the importance of the Landau cutoff. For the TPD instability, the Landau cutoff is found to be respected in all spherical and planar target experiments. In addition, the maximum plasma wave amplitudes appear to occur near the Landau cutoff.
We report the observation of an extended series of integral harmonic lines in the spectrum of direct backscatter of 10.6-μm radiation incident at intensities ≳1014 W/cm2 onto planar solid targets. We have observed and spectrally resolved up to the eleventh harmonic (0.95 μm) at intensities well above the plasma continuum background.
Direct observations of secondary Langmuir waves produced by the parametric decay instability of primary Langmuir waves are presented. The measurements have been obtained using Thomson scattering of a short-wavelength probe laser beam and are resolved in time, space, frequency, and wave number. The primary Langmuir waves were driven by stimulated Raman scattering (SRS) of a smoothed laser beam in a preformed plasma. Measurements of the amplitude of the density fluctuations associated with primary and secondary Langmuir waves show that the threshold of the Langmuir decay instability (LDI) is close to the threshold of the Raman instability. This is in agreement with theoretical predictions. However, the ratio of amplitudes of the density fluctuations associated with both secondary and primary Langmuir waves does not agree with existing theories of SRS saturation due to LDI cascading and/or strong Langmuir turbulence in homogeneous plasmas. An explanation based on the interaction beam intensity distribution produced by the random phase plate in the plasma is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.