Matua bromegrass (Bromus willdenowii Kunth. cv. Grasslands Matua) was introduced in 1973, but little information exists concerning its potential as a hay for horses. Thus, voluntary intake and apparent digestibility of OM, CP, and fiber components of Matua by 18 Quarter Horse yearlings (mean initial BW 354 kg; SE 5.8) were compared with alfalfa (Medicago sativa L.) and coastal bermudagrass (Cynodon dactylon L.) as hays in a randomized block design. A 15-d adjustment period was followed by a 5-d collection period during which the hays were consumed ad libitum. Voluntary intake of DM was greater (P<.01) for alfalfa (10.9 kg/d) than for the mean of the grasses, and intake of Matua (10.0 kg/d) was greater (P<.001) than that of bermudagrass (7.4 kg/d). Apparent digestibility of OM was greater (P<.001) for alfalfa (74%) than for the mean of the grasses but did not differ between Matua (64%) and bermudagrass (60%). At the end of the digestion trial, each yearling was offered each of the three forage hays during an 11-d period to determine subsequent preference and effect of previous hay experience. Yearlings preferred alfalfa over the grass hays and generally selected more Matua than bermudagrass. All yearlings consumed less of the forage species to which they had been previously exposed compared with unadapted yearlings. The Matua hay fed in this trial was palatable and met most of the nutritional needs for yearling horses.
Zonadhesin is a rapidly evolving protein in the sperm acrosome that confers species specificity to sperm-zona pellucida adhesion. Though structural variation in zonadhesin likely contributes to its species-specific function, the protein has not previously been characterized in organisms capable of interbreeding. Here we compared properties of zonadhesin in several animals, including the horse (Equus caballus), donkey (E. asinus), and Grevy's zebra (E. grevyi) to determine if variation in zonadhesin correlates with ability of gametes to cross-fertilize. Zonadhesin localized to the apical acrosomes of spermatozoa from all three Equus species, similar to its localization in other animals. Likewise, in horse and donkey testis, zonadhesin was detected only in germ cells, first in the acrosomal granule of round spermatids and then in the developing acrosomes of elongating spermatids. Among non-Equus species, D3-domain polypeptides of mature, processed zonadhesin varied markedly in size and detergent solubility. However, zonadhesin D3-domain polypeptides in horse, donkey, and zebra spermatozoa exhibited identical electrophoretic mobility and detergent solubility. Equus zonadhesin D3-polypeptides (p110/p80 doublet) were most similar in size to porcine and bovine zonadhesin D3-polypeptides (p105). Sequence comparisons revealed that the horse zonadhesin precursor's domain content and arrangement are similar to those of zonadhesin from other large animals. Partial sequences of horse and donkey zonadhesin were much more similar to each other (>99% identity) than they were to orthologous sequences of human, pig, rabbit, and mouse zonadhesin (52%-72% identity). We conclude that conservation of zonadhesin D3-polypeptide properties correlates with ability of Equus species to interbreed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.