Transit events of extrasolar planets offer a wealth of information for planetary characterization. However, for many known targets, the uncertainty of their predicted transit windows prohibits an accurate scheduling of follow-up observations. In this work, we refine the ephemerides of 21 hot Jupiter exoplanets with the largest timing uncertainties. We collected 120 professional and amateur transit light curves of the targets of interest, observed with a range of telescopes of 0.3m to 2.2m, and analyzed them along with the timing information of the planets discovery papers. In the case of WASP-117b, we measured a timing deviation compared to the known ephemeris of about 3.5 hours, and for HAT-P-29b and HAT-P-31b the deviation amounted to about 2 hours and more. For all targets, the new ephemeris predicts transit timings with uncertainties of less than 6 minutes in the year 2018 and less than 13 minutes until 2025. Thus, our results allow for an accurate scheduling of follow-up observations in the next decade.
We present multi-color light curves for the W UMa-type eclipsing binary TU Boo for two epochs separated by 22 years. An analysis of the O-C diagram indicates the earlier observations took place right in the middle of a major period change, thus allowing for a unique study on mass transfer and period changes in this W UMa-type system. We compute model fits to our light curves, along with the only other published set, using the Wilson-Devinney program, and find temporally correlated changes in the size of the secondary component with anomalies in the O-C diagram. We investigate the cause of these changes and find support for the existence of rapid, large-scale mass transfer between the components. We postulate that this interaction allows them to maintain nearly equal surface temperatures despite having achieved only marginal contact. We also find support for the evolutionary scenario in which TU Boo has undergone a mass ratio reversal in the past due to large-scale mass transfer so that what is presently the secondary component of TU Boo is in an advanced evolutionary state, oversized due to a helium-enriched core, with a total system age of ≥ 10 Gyr.
We acquired differential UBV photoelectric photometry and radial velocities of the relatively bright, understudied, massive Algol binary ETTau and utilized the Wilson-Devinney (WD) analysis program to obtain a simultaneous solution of these observations. To improve the orbital ephemeris, the V measurements from the ASAS program were also analyzed. Because of the very rapid rotation of the significantly more massive and hotter component (B2/3 spectral class), only radial velocities of the secondary component, which has a ∼B7 spectral class, could be measured. We derive masses of 30,280 109 K. The system, which has a period of 5.996883 ± 0.000002 days, is assumed to have a circular orbit and is seen at an inclination of 79 . 55 0 . 05.
KR Per is a partially eclipsing binary with an orbital period of 0.9960798 days, very close to one sidereal day, making it difficult to obtain extensive phase coverage in a reasonable amount of time. We used the Wilson–Devinney program to determine its orbital elements and stellar absolute dimensions from recently acquired radial velocities and differential BVRI observations that were supplemented with previous differential UBV measurements and published times of minima. The two components are each F5 V stars with masses of and . The radii are and . The orbital period of the eclipsing system is variable and more times of minima observations are needed. A comparison with evolutionary tracks indicates that the system has an age of 2.1 ± 0.1 Gyr.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.