Electronic mail: dlosbor@sandia.gov (DLO), cataatj@sandia.gov (CAT).We have developed a multiplexed time-and photon-energy-resolved photoionization mass spectrometer for the study of the kinetics and isomeric product branching of gas phase, neutral chemical reactions. The instrument utilizes a side-sampled flow tube reactor, continuously tunable synchrotron radiation for photoionization, a multi-mass double-focusing mass spectrometer with 100% duty cycle, and a time-and positionsensitive detector for single ion counting. This approach enables multiplexed, universal detection of molecules with high sensitivity and selectivity. In addition to measurement of rate coefficients as a function of temperature and pressure, different structural isomers can be distinguished based on their photoionization efficiency curves, providing a more detailed probe of reaction mechanisms. The multiplexed 3-dimensional data structure
Ion-assisted pulsed laser deposition has been used to produce films containing ≳85% sp3-bonded cubic boron nitride (c-BN). By ablating from a target of hexagonal boron nitride (h-BN), BN films have been deposited on heated (50–800 °C) Si(100) surfaces. The growing films are irradiated with ions from a broad beam ion source operated with Ar and N2 source gasses. Successful c-BN synthesis has been confirmed by Fourier transform infrared (FTIR) spectroscopy, high-resolution transmission electron microscopy (TEM), selected-area electron diffraction, electron energy-loss spectroscopy, and x-ray diffraction. The films are polycrystalline and show grain sizes up to 300 Å. In addition, Rutherford backscattering, elastic recoil detection, and Auger electron spectroscopies have been used to further characterize the samples. The effects of varying ion current density, substrate growth temperature, growth time, and ion energy have been investigated. It is found that stoichiometric films with a high c-BN percentage can be grown between 150 and 500 °C. Below ∼150 °C, the c-BN percentage drops dramatically, and the deposited film is completely resputtered at the current densities and ablation deposition rates used. As the deposition temperature rises above ∼500 °C the c-BN percentage also drops, but less dramatically than at low temperatures. In addition, the IR-active c-BN mode narrows considerably as the deposition temperature increases, suggesting that the c-BN material has fewer defects or larger grain size. It is found that films with a high c-BN percentage are deposited only in a narrow window of ion/atom arrival values that are near unity at beam energies between 800 and 1200 eV. Below this window the deposited films have a low c-BN percentage, and above this window the deposited film is completely resputtered. Using FTIR analysis, it is found that the c-BN percentage in these samples is dependent upon growth time. The initial deposit is essentially all sp2-bonded material and sp3-bonded material forms above this layer. Consistently, cross-section TEM samples reveal this layer to consist of an amorphous BN layer (∼30 Å thick) directly on the Si substrate followed by highly oriented turbostratic BN (∼300 Å thick) and finally the c-BN layer. The h-BN/t-BN interfacial layer is oriented with the 002 basal planes perpendicular to the plane of the substrate. Importantly, the position of the c-BN IR phonon changes with growth time. Initially this mode appears near 1130 cm−1 and decreases with growth time to a constant value of 1085 cm−1. Since in bulk c-BN the IR mode appears at 1065 cm−1, a large compressive stress induced by the ion bombardment is suggested. Possible mechanisms are commented on for the conversion process to c-BN based upon the results.
Optimal temporal gating for laser-induced breakdown spectroscopy (LIBS) analysis was investigated for a select group of toxic metals, namely the Resource Conservation and Recovery Act (RCRA) metals arsenic, beryllium, cadmium, chromium, lead, and mercury. The differing rates of decay between the continuum plasma emission and the atomic emission were used as a means to maximize the signal-to-noise ratio of the atomic emission lines for these six metal species. Detection windows were investigated corresponding to delay times from 2 to 50 μs following the plasma-initiating laser pulse. For the current experimental conditions, it is concluded that the relatively short delay time of 12 μs is optimal for the detection of arsenic, beryllium, cadmium, and mercury, while a longer delay time of 50 μs is optimal for the detection of chromium and lead. The reduced atomic emission intensity at relatively long delay times is compensated for by the use of long detector gate widths. Estimated detection limits are reported for the six metal species based on the optimized temporal gating and ensemble averaging of multiple laser pulses, and the implications for simultaneous metals monitoring are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.