This paper introduces a review article on indoor localization techniques and technologies. The paper starts with current localization systems and summarizes comparisons between these systems in terms of accuracy, cost, advantages, and disadvantages. Also, the paper presents different detection techniques and compare them in terms of accuracy and cost. Finally, localization methods and algorithms, including angle of arrival (AOA), time of arrival (TOA), and recived signal strength (RSS) are introduced. The study contains concepts, requirements, and specifications for each category of methods presents pros and cons for investigated methods, and conducts comparisons between them.
A modified indoor path loss prediction model is presented, namely, effective wall loss model. The modified model is compared to other indoor path loss prediction models using simulation data and real‐time measurements. Different operating frequencies and antenna polarizations are considered to verify the observations. In the simulation part, effective wall loss model shows the best performance among other models as it outperforms 2 times the dual‐slope model, which is the second best performance. Similar observations were recorded from the experimental results. Linear attenuation and one‐slope models have similar behavior, the two models parameters show dependency on operating frequency and antenna polarization.
A new compact Cylindrical Dielectric Resonator Antenna (CDRA) with a defected ground for ultra-wideband applications is presented. The structure is based on two cylindrical dielectric resonators asymmetrically located with respect to the center of an offset rectangular coupling aperture, with consideration of three and four Dielectric Resonators (DR). The resonant modes generated by the defected ground are studied and investigated. A parametric optimization study of the antenna design has been carried out to determine the optimal dimensions of the defected ground plane, resulting in an impedance bandwidth of over 133% that covers the frequency band from 3.6 GHz to 18.0 GHz. A power gain of about 7.9 dBi has been achieved. Design details and measured and simulated results are presented and discussed. INDEX TERMS Cylindrical dielectric resonators antenna, ultra-wideband, defected ground structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.