Groundwater is the main source of water in arid and semi-arid regions, so it is very important to recognize vulnerable parts of aquifer under future climate change conditions. In this research, 16 climate models were evaluated based on weighting approach. HADCM3 and CGCM2.3.2a models were selected for temperature and precipitation prediction, respectively. LARS-WG was used for downscaling AOGCMs outputs. Results show that temperature increase by 1.4°C and precipitation changes between +10 and −6 % under B1 and A2 emission scenario, respectively. Runoff volumes will decrease by −39 % under A2 emission scenario whereas runoff volume will increase by +12 % under B1 emission scenario. Simulation of groundwater head variation by MODFLOW software indicates higher groundwater depletion rate under A2 scenario compared to B1 scenario. Groundwater model outputs indicate that the most vulnerable part of the aquifer is located in the southwest region. Large number of extraction wells and low aquifer transmissivity are the reasons for high vulnerability of the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.