Abstract:Electrically conductive composites consisted of conducting fillers and the insulating polymer matrix. These composites could serve in preparation of piezoresistive composites (i.e. quantum tunnelling composites (QTC) due to their flexibility, light weight, easy processing, low cost, greater resistance changes, and ease of spreading over arbitrary curved surfaces.QTC have attracted tremendous attention due to their potential applications in advanced stress and strain sensors. Recently, various types of conducting materials and many soft polymers have been utilized in the manufacture of QTCs. Characterization of such composites involves several physical parameters. Therefore, a low cost technique was designed and manufactures in order to measure most of electro-mechanical properties of the produced composites with good accuracy and repeatability. QTCs were prepared by mixing poly-dimethyl siloxane (PDMS) and with different concentrations of graphite flakes (1:0.75, 1:1, 1:1.5, 1:1.75 and 1:2). This study declared the efficiency of the suggested technique as well as some fundamental features of the prepared composite. For example, conductivity of the composites containing higher concentration of graphite was found to be independent on rate of pressing during the test. It was also found that the capacitive behavior of the sample interrupted the flow of current at the instant of removing the applied pressure. The suggested setup has several advantages such as simplicity, high accuracy and providing lots of technical data that required for development and confirmation of models for the quantum tunnelling process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.