The electric resistivity of various human tissues has been reported in many studies, but on comparison large differences appear between these studies. The aim of this study was to investigate systematically the resistivities of human tissues as published in review studies (100 Hz-10 MHz). A data set of 103 resistivities for 21 different human tissues was compiled from six review studies. For each kind of tissue the mean and its 95% confidence interval were calculated. Moreover, an analysis of covariance showed that the calculated means were not statistically different for most tissues, namely skeletal (171 omega cm) and cardiac (175 omega cm) muscle, kidney (211 omega cm), liver (342 omega cm), lung (157 omega cm) and spleen (405 omega cm), with bone (> 17,583 omega cm), fat (3,850 omega cm) and, most likely, the stratum corneum of the skin having higher resistivities. The insignificance of differences between various tissue means could imply an equality of their resistivities, or, alternatively, could be the result of the large confidence intervals which obscured real existing differences. In either case, however, the large 95% confidence intervals reflected large uncertainties in our knowledge of resistivities of human tissues. Applications based on these resistivities in bioimpedance methods, EEG and EKG, should be developed and evaluated with these uncertainties in mind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.