We report a simple method to produce foams and emulsions of extraordinary stability by using hydrophobic cellulose microparticles, which are formed in situ by a liquid-liquid dispersion technique. The hydrophobic cellulose derivative, hypromellose phthalate (HP), was initially dissolved in water-miscible solvents such as acetone and ethanol/water mixtures. As these HP stock solutions were sheared in aqueous media, micron sized cellulose particles formed by the solvent attrition. We also designed and investigated an effective and simple process for making HP particles without any organic solvents, where both the solvent and antisolvent were aqueous buffer solutions at different pH. Consequently, the HP particles adsorbed onto the water/air or water/oil interfaces created during shear blending, resulting in highly stable foams or foam/emulsions. The formation of HP particles and their ability for short-term and long-term stabilization of interfaces strongly depended on the HP concentration in stock solutions, as well as the solvent chemistry of both stock solutions and continuous phase media. Some foams and emulsion samples formed in the presence of ca. 1 wt% HP were stable for months. This new class of nontoxic inexpensive cellulose-based particle stabilizers has the potential to substitute conventional synthetic surfactants, especially in edible, pharmaceutical and biodegradable products.
A new Langmuir-type pendant-drop penetration film balance has been developed combining a Langmuir-type pendant-drop film balance with a new rapid-subphase-exchange technique. In addition to the determination of surface pressure—molecular area isotherms of insoluble monolayers deposited on the surface of a pendant drop, it allows the study of reactions with some surfactant added to the subphase. The monolayer is spread on the surface of a drop suspended from a capillary, which is the outer one of an arrangement of two coaxial capillaries connected to the different branches of a microinjector. Once the film is brought to the desired state of compression by varying the drop volume with the microinjector, the subphase liquid in the drop can be exchanged quantitatively by means of the coaxial capillaries. This exchange is complete for a through-flow of at least three times the drop volume, and the monolayers endure it at all tested film pressures. The determination of surface tension as a function of surface area is performed using axisymmetric drop shape analysis (ADSA). The complete set-up, i.e., the image capturing and microinjector system is fully computer controlled by a user-friendly and fully Windows integrated program, including the ADSA surface tension calculus algorithm. As a penetration film balance, pendant-drop methodologies offer a wide range of advantages such as a more stringent control of the environmental conditions and therefore, more uniform temperature, pressure and concentration along the interface, small amounts of material needed, and a 20 times greater interface/volume ratio than in conventional Langmuir toughs.
A new class of push-pull molecules was recently identified, based on pyridine dicarboxamide as an electron acceptor group and bearing a fluorenethynyl pi-conjugated bridge. The molecules present good second and third order nonlinear properties, with a static quadratic hyperpolarisability mubeta (at 1.907 microm) of 320 x 10(-48) esu (mubeta(0) = 249 x 10(-48) esu) and a maximum two-photon absorption cross-section of 1146 GM. Starting from this generic structure, we designed a series of eight amphiphilic nonlinear probes, varying the length of the lipophilic tail and the nature of the polar head, and tested their cell membrane affinity by nonlinear optical imaging. A good membrane affinity was observed with probes bearing short alkyl chains and carbohydrate moieties as the polar head, emphasizing the importance of the lipophilic-hydrophilic balance, as well as the role of the polar head. This original approach based on carbohydrate head groups is an important advancement in the design of membrane probes, since these highly versatile functional groups confer adequate hydrophilicity and yet conserve overall molecular neutrality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.